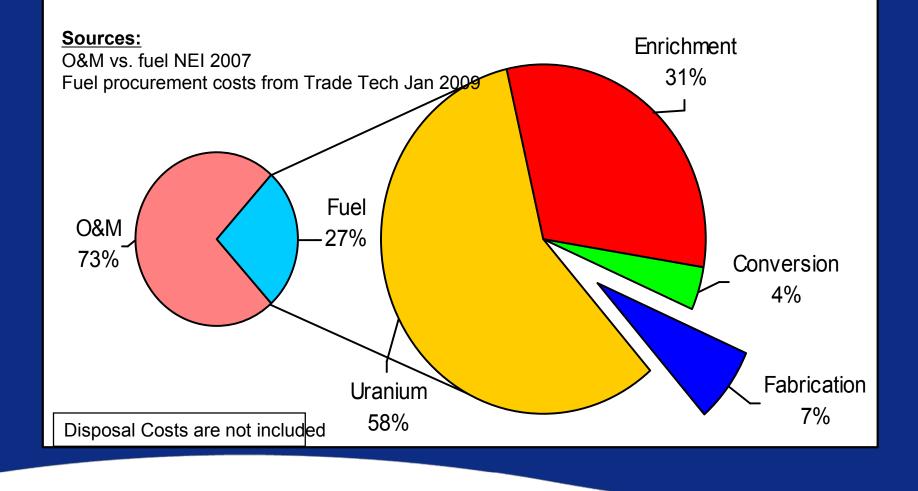
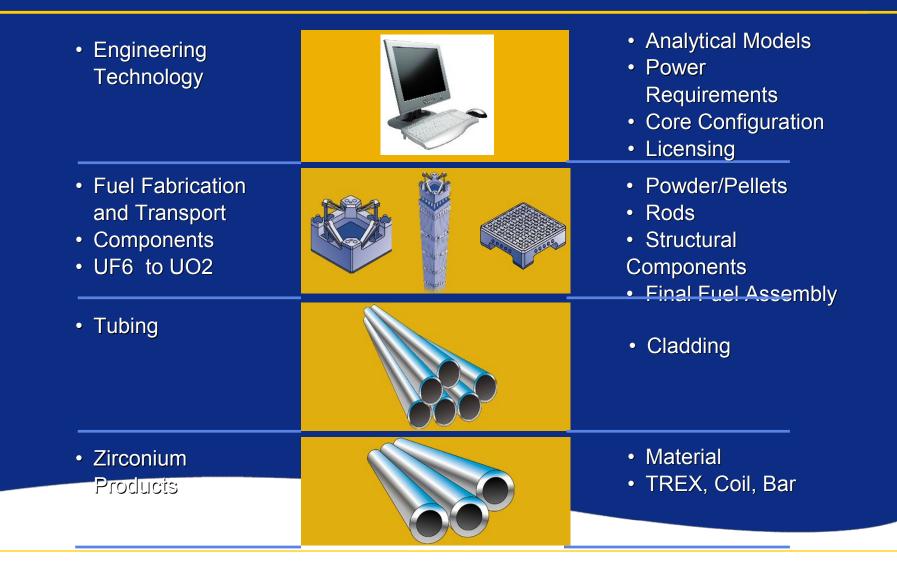
Fuel Fabrication Today-to-Tomorrow


VP Asia Fuel Westinghouse Electric Company Dr. V.J. Esposito January 26, 2009

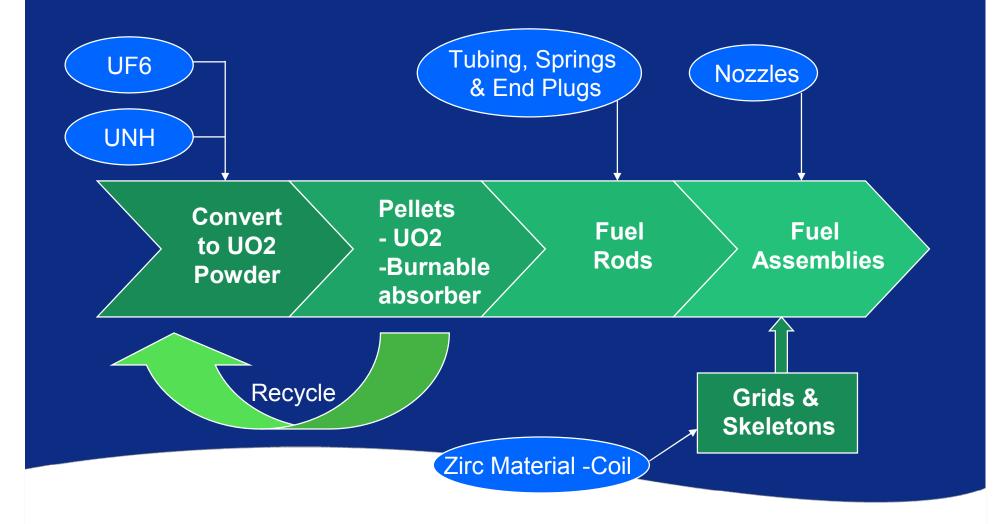
Fuel Fabrication Outline

Fuel Value Chain
Fuel Assembly Process
Manufacturing
Design
Engineering
Global Capacity
Prediction of Fuel Demand
Assurance of Fuel Assembly Supply
Conclusion

Overall Utility Nuclear Fuel Costs


Fuel Value Chain

Trade Tech Long Term Price Indicators, January 9, 2009


	U3O8	Conversion	Enrichment	abrication Bar en	
Unit Price	\$ 70/lb U3O8	\$ 12.25/KgUn	\$ 159/SWU	\$ 300/KgU	???
Price /KgU	\$ 2,047/KgU	\$ 137/KgU	\$ 1,114/KgU	\$ 300/KgU	???
Cumul.	\$ 2,047/KgU	\$ 2,184/KgU	\$ 3,298/KgU	\$ 3,598/KgU	
Percent	57%	4%	31%	8%	
Eor-1-Kg	U at 4.90 w/o and tails	assay of 0.3 w/o			
터 바 = 11, 3/ 위 = 기, 1	1 0 2				

Key Elements for Fuel Fabrication and Engineering:

Fuel Assembly is an engineered product

Fuel Fabrication Process

Fuel Assembly Technology

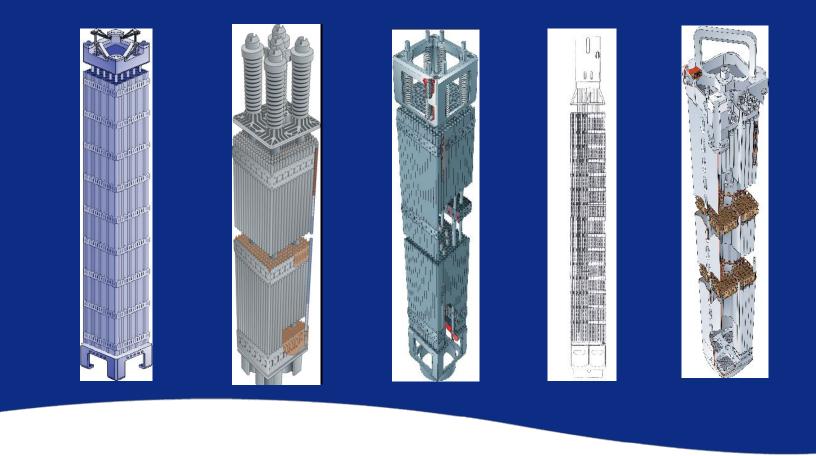
Fuel Design:

- Analytical Model to simulate fuel assembly in the-chicensing

- •Neutronic
- •Mechanical/Material
- •Thermal-Hydraluics
- •Safety Analysis

- Separate Effect and Plant Test Data

- •DNB
- •Mechanical
- •Material Corrosion
- •Pressure Drop
- •Temperature Profile


Safety AnalysisRegulatory Criteria

- QA/QC

- Fuel Performance
- •Power Requirements
 - •Cycle Length
 - •Enrichment
 - •Number of Fuel Assemblies
 - •Operating parameters (shut down margin, burn-
 - up)

Fuel Designs:

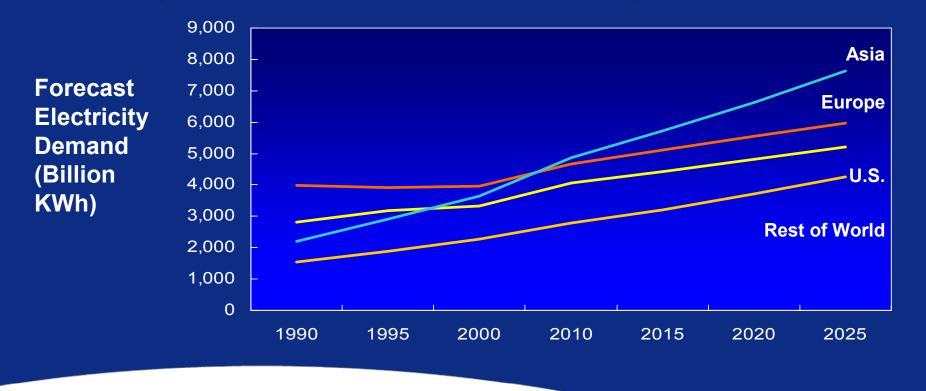
Fuel Suppliers have different designs/materials/engineering methodology

LWR Current Fabrication

Nominal Plant Capacity MTU/year

LWR Uranium Oxide Fabrication Facilities Nominal Plant Capacities MTU/Year (1/1/2008)

Country	Operator	Facility	Powder	Pellet	Assembly
Belgium	AREVA NP EU	Dessel	0	700	700
Brazil	INB-Resende	FCN Resende	165	120	240
China	Jianzhong	Jianzhong	400	400	450
France	AREVA NP EU	Romans	1200	820	820
Germany	AREVA NP EU	Lingen Fab	650	650	650
India	NFC-Hyderabd	Hyderabad	48	48	48
Japan	NFI-Kum/Tok	Kumatori	0	360	284
	MNF-TokaiMur	Tokai MNF	475	440	440
	NFI-Kum/Tok	Tokai NFI	0	250	250
	JNF-Yokosuka	Yokosuka	0	620	750


LWR Current Fabrication (cont'd)

Country	Operator	Facility	Powder	Pellet	Assembly
Kazakhstan	Kazatomprom	Ulba	3000	1000	0
Russia	TVEL-Ele/Nov	Elemash	1000	850	785
	TVEL-Ele/Nov	Novosibirsk	150	150	1000
South Korea	KNFC-Daejeon	Daejeon	600	600	600
Spain	ENUSA-Juzbad	Juzbado	0	400	400
Sweden	WestSE-Vas	Vasteras	530	530	400
U.S.A.	WestUS-Colum	Columbia Fab	1350	1500	1500
	AREVA NP US	Lynchburg	0	0	700
	AREVA NP US	Richland	1800	700	700
	GNF-Wilmingt	Wilmington	1000	1100	1100
United Kingdom	WestUK-Sprin	Springfields	440	440	0
Total		MTU/Year	12808	11678	11817

* Source NAC

Nuclear Renaissance

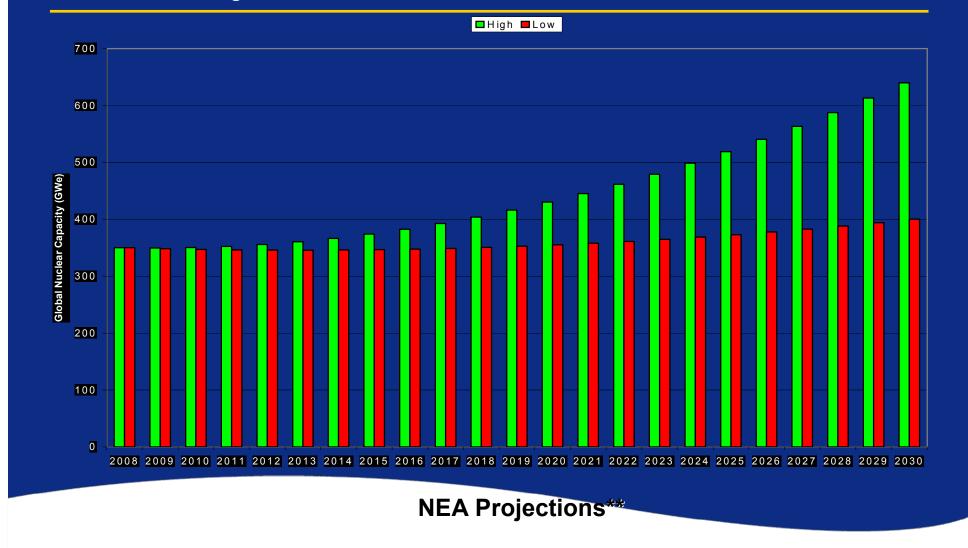
Growing demand for clean, safe electricity

Today's Regional LWR

Demands vs. Capacity

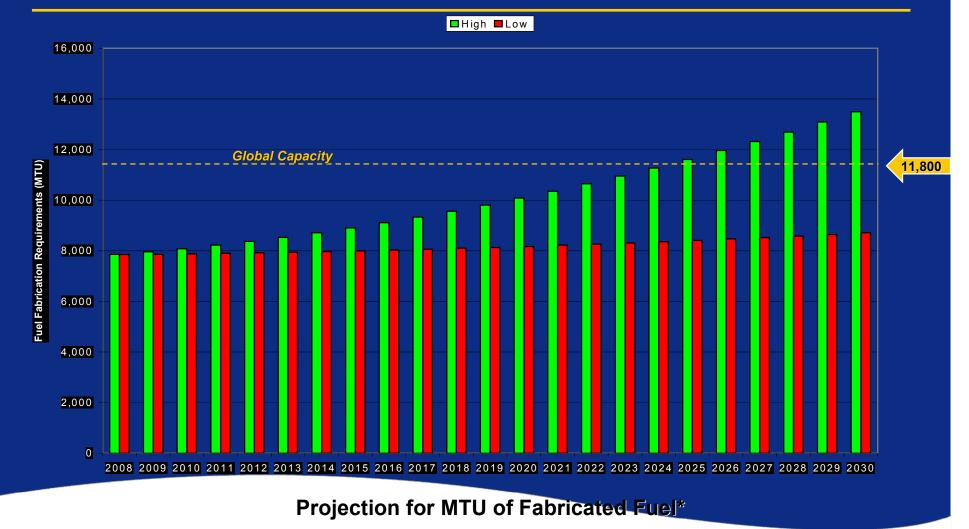
	Demand (MTU/yr)	Capacity (MTU/yr)
US:	~2200	~4000
Western Europe:	~2000	~3500
Asia:	~1250	~1500

Growth Projections for Nuclear Power


EIA 2008 Data:

Global Increase ~150 GWe by 2025

WNA Data: Global Increase ~80 GWe by 2020 ~150 GWe by 2030


IAEA 2008 Data:Global Increase by 2030Low End:High End:~300 GWe

NEA Projections: GWe Growth Range

*NEA, Nuclear Engineering Outlook 2003

Projection for MTU of Fabricated Fuel

Fuel Design/License/Fabrication

To answer the question regarding demand vs. capacity, questions on a local basis need to be answered:

Where will the demand for fuel assemblies be by country?

How big will the demand be by country?

What new plant design is to be chosen?

Where is the capacity to serve the demand?

Will countries develop indigenous capability?

These questions require a country-by-country assessment from the perspective of growth rate, capacity strategy, government aspects and available options.

Fuel Assembly – Demand vs. Capacity

• Somewhat different than uranium (U308) or enrichment, the final fuel assembly is likely to be different from one supplier to another, either because of design, material, license ...

Fuel Assembly is an engineered product

Fuel Assembly Supply is much more "local" than "global"
 ✓ Licensing

✓ Design

✓ Transportation

✓ Governmental Requirements

✓ New Plant Design

Risk – Assurance of Fuel Assembly Availability

• A fuel supplier having the ability to manufacture specific fuel design in multiple countries.

- Cross Qualification of Designs
- Integrated Engineering Methodology

• Ability to use fuel supplier licensees to manufacture and perform the engineering analysis.

 Potential to expand licensee rights beyond local boundaries

Potential Strategic Inventory of fuel assemblies

Conclusions

•Capacity growth studies are highly variable 50 GWe - >300 GWe

•Current and Planned Global Capacity available for significant increase in new plants, however, only from a global aspect.

•Local capacity will be required to address regional growth.

•Transportation capability is an important element to achieve better globalization

•Local or Regional production is likely more important than global availability which can result in capacity short falls