

Name	Title in the Joint Study Team	Organization	Expertise
Eng. Hiroshi Nishio	Team Leader	Senior Executive Managing Director, Abe Nikko Kogyo	Civil engineering
Eng. Shigemasa Katada	Chief of the technical study	Department Manager, Vessel Technical Dep., Abe Nikko Kogyo	Civil engineering
Eng. Akira Miyazima	Water supply facility	Manager, Construction Dept. Chubu Branch, Abe Nikko Kogyo.	Construction management
Eng. Hin Rachana	Transmission and distribution facility	Consultant, Nakanihon Engineering Consultants	Designing of transmission and distribution facility
Ms. Tomoko Tamura	Project Manager, Socio-economic study	Consultant, International Cooperation Dep. KMC	Socio-econmic stud
Mr. Hiroshi Okabe	Business planning	President, KMC	Organizational development
Ms. Mika Kawamoto	Business planning and project coordination	Consultant, International Cooperation Dep. KMC	Management of natural resources
Dr. Masao Yamada	Regional Contribution	Senior Advisor, Live of Water, Chubu Forum, Nagoya	Regional Development
Dr.Chisato Takahashi	Research Assistant	KMC Lanka/ PARCIC	Social Study

		RC	PC
Structural Analysis	Loads	Self weight, super dead, ir	nposed and water pressure
	Structural Analysis	FEM usin	g SAP2000
	Limit States	SLS a	nd ULS
	Joint constraints	Roof dome & circula	ar wall joint = Pinned
		Circular wall joint	& base joint = Fixed
Code		BS8007: 1987	& BS8110: 1985
Material	Concrete	G35A	G35A
	Steel	f _y = 460 N/mm²	f _y = 460 N/mm ²
			f _{yt} =1860 (High tensile steel tendons
Durability	Crack width	0.1 ~ 0.2 mm	No cracks

ltem		Cost in SLRs.		
No	Item Description	In PC	In RC	
1	2000 m ³ Tank (Beruwala)	26,984,694.33	31,168,279.42	
2	3000 m ³ Tank (Katunayake)	35,376,036.87		
3	4000 m ³ Tank (Katunayake)	42,102,090.47		
4	8000 m ³ Tank (Ambatale)	76,000,015.26	83,297,612.51	
5	18000 m ³ Tank (Kalatuwawa)	134,749,466.22	135,451,633.16	

Note: NWSDB rates were used. O/H and profit included.

48

lity classification t of the likely behaviour of a prestressed concrete structure or element, the amount of ress allowed under service load defines its class as follows: lexural tensile stresses; ural tensile stresses but no visible cracking; ural tensile stresses but surface width of cracks not exceeding 0.1 mm for members in
ress allowed under service load defines its class as follows: lexural tensile stresses; ural tensile stresses but no visible cracking; ural tensile stresses but surface width of cracks not exceeding 0.1 mm for members in
ural tensile stresses but no visible cracking; ural tensile stresses but surface width of cracks not exceeding 0.1 mm for members in
ural tensile stresses but surface width of cracks not exceeding 0.1 mm for members in
severe environments (see Table 3.2) and not exceeding 0.2 mm for all other abers.
no flexural tensile stress

ABE NIKKO KOGYO CO., LTD.

(based on last year's schedule)

- EOI: Early June, 2014
- Submission of proposal: End June, 2014
- Selection: July 2014
- Contract negotiation: Aug. 2014
- Commencement of the project: Sep. 2014

75

Project period: 1 – 3 years

PILOT DEMONSTRATION PROJECT UNDER JICA FUND

ltem	Parameter Considered	Even a stand statute
		Expected status
1	Capacity of the Tank/Reservoir	Shall be 2,000 m ³
2	Location	In or around Colombo District
3	Land availability	Shall already been acquired by NWSDB
4	Type of the planned tank	Shall be an on land Ground Reservoir
5	Usability of the tank	To be added to the system immediately

- The TESCO Co., Ltd. Nagoya branch office started the oversea projects with a research project in Bangladesh in February 2012.
- TESCO ASIA Co., Ltd. took over the oversea projects from the TESCO Co., Ltd. Nagoya branch office in June 2013
- In September 2012, we exchanged ideas about nonrevenue water measures with the Greater Kandy water supply project of NWSDB in Sri Lanka
- Demonstrated the newest electronic leak detector for water leakage in Kandy city in April 2013.

