News Release

March 28, 2011 Nuclear and Industrial Safety Agency

Regarding the detection of radioactive material in the soil on the site of Fukushima Dai-ichi Nuclear Power Station

Regarding the analysis of plutonium contained in the samples of soil, which Tokyo Electric Power Company (TEPCO) collected on 21 and 22 March on the site of Fukushima Dai-ichi Nuclear Power Station (5 points), TEPCO reported the result of it, it is informed as attached.

(Contact Person)

Mr. Toshihiro Bannai

Director, International Affairs Office,

NISA/METI

Phone: +81-(0)3-3501-1087

Press Releases

Press Release (Mar 28,2011)

Detection of radioactive material in the soil in Fukushima Dailchi Nuclear Power Station

On March 28th 2011, as part of monitoring activity of the surrounding environment, we conducted analysis of plutonium contained in the soil collected on March 21st and 22nd at the 5 spots in Fukushima Daiichi Nuclear Power Station. As a result, plutonium 238, 239 and 240 were detected as shown in the attachment.

We will continue the radionuclide analysis contained in the soil.

- <Results of the analysis>
- -Plutonium was detected in the soil of Fukushima Daiichi Nuclear Power Station.
- -The density of detected plutonium is equivalent to the fallout observed in Japan when the atmospheric nuclear test was conducted in the past.
- -The detected plutonium from two samples out of five may be the direct result of the recent incident, considering their activity ratio of the plutonium isotopes.
- -The density of detected plutonium is equivalent to the density in the soil under normal environmental conditions and therefore poses no major impact on human health. TEPCO strengthens environment monitoring inside the station and surrounding areas.
- -We will conduct analysis of the three additional soil samples.

attachment1:Result of Pu measurement in the soil in Fukushima Daiichi
.Nuclear Power Plant(PDF 80.9KB)

attachment2: Fukushima Daiichi Nuclear Power Station Sampling Spots of Soil (PDF 112KB)

attachment3: Fukushima Daiichi Nuclear Power Station Regular Sampling Spots of Soil (PDF 135KB)

Di back to page too

Result of Pu measurement in the soil in Fukushima Daiichi Nuclear Power Plant

1. Result of the measurement

(Unit: Bq/kg*dry soil)

Sampling spot	Time of sampling	Pu-238	Pu-239,Pu-240
①site field	13:30, March 21st	$(5.4\pm0.62)\times10^{-1}$	$(2.7\pm0.42)\times10^{-1}$
21km away from Unit	7:00, March 22 nd	N.D.	$(2.6\pm0.58)\times10^{-1}$
1/2 exhaust stack			
③ 0.75km away from	7:10, March 22 nd	N.D.	1.2±0.12
Unit 1/2 exhaust stack			
40.5km away from Unit	7:18, March 22 nd	N.D.	1.2±0.11
1/2 exhaust stack			
⑤solid waste storage	7:45, March 22 nd	$(1.8 \pm 0.33) \times 10^{-1}$	$(1.9\pm0.34)\times10^{-1}$
ordinary domestic soil*		N.D. ~ 1.5 × 10 ⁻¹	N.D.∼4.5

※ : MEXT environmental radiation database; 1978-2008

2. Analysis

Density of detected Pu-238, Pu-239 and Pu-240 are within the same level of the fallout observed in Japan after the atmospheric nuclear test in the past. Activity ratio of Pu-238 detected in site field and solid waste storage against Pu-239 and Pu-240 are 2.0 and 0.94 respectively. They exceed activity ratio of 0.026 which resulted from the atmospheric nuclear test in the past, thus those Pus are considered to come from the recent incident.

Fukushima Daiichi Nuclear Power Station Sampling Spots of Soil

Fukushima Daiichi Nuclear Power Station Regular Sampling Spots of Soil

図 面 名 祢 福島第一原子力発道所 管理区域全体図 Extract

March 29, 2011 Nuclear and Industrial Safety Agency

Seismic Damage Information (the 61th Release) (As of 15:00 March 29th, 2011)

Nuclear and Industrial Safety Agency (NISA) confirmed the current situation of Onagawa NPS, Tohoku Electric Power Co. Inc.; Fukushima Dai-ichi and Fukushima Dai-ni NPSs, Tokyo Electric Power Co. Inc. (TEPCO); Tokai Dai-ni NPS, Japan Atomic Power Co. Inc. as follows:

Major updates are as follows.

- 1. Nuclear Power Stations (NPSs)
- Fukushima Dai-ichi NPS
- The pump for the fresh water injection to RPV of Unit 1 was switched from the Fire Pump Truck to the temporary motor-driven pump. (08:32 March 29th)
- Water spray (fresh water) for Unit 3 using Concrete Pump Truck (50t/h) was started. (14:17 March 29th)
- Lighting of Central Operation Room of Unit 4 was recovered (11:50 March 29th)
- · When removing the flange of pipes of Residual Heat Removal Seawater System outside the building of Unit 3, three sub-contractor's employees were wetted by the water remaining in the pipe. However, as the result of wiping the water off, no radioactive materials were attached to their bodies.

2. Action taken by NISA

- On March 28th, Chief Cabinet Secretary mentioned the continuation of the limited-access within the area of 20 km from Fukushima Dai-ichi NPS. At the same day, the Local Emergency Response Headquarters notified the related municipalities of forbidding entry to the evacuation area within the 20 km zone.
- The report was received, regarding the accident and trouble etc. in Onagawa Nuclear Power Station of Tohoku Electric Power Co. Inc. (the trouble of pump of component cooling water system etc. in Unit 2 and the

News Release

fall of heavy oil tank for auxiliary boiler in Unit 1 by tsunami), pursuant to the Article 62-3 of Nuclear Regulation Act and Ministerial Ordinance for the electricity related report.(11:16 March 29th)

For more information:

NISA English Home Page

http://www.nisa.meti.go.jp/english/index.html

Extract

March 29, 2011 Nuclear and Industrial Safety Agency

Seismic Damage Information (the 60th Release) (As of 08:00 <u>March 29th</u>, 2011)

Nuclear and Industrial Safety Agency (NISA) confirmed the current situation of Onagawa NPS, Tohoku Electric Power Co. Inc.; Fukushima Dai-ichi and Fukushima Dai-ni NPSs, Tokyo Electric Power Co. Inc. (TEPCO); Tokai Dai-ni NPS, Japan Atomic Power Co. Inc. as follows:

Major updates are as follows.

- 1. Nuclear Power Stations (NPSs)
- Fukushima Dai-ichi NPS
- The water was confirmed in the vertical parts of the trenches (an underground structure for laying pipes, shaped like a tunnel) outside of the turbine building of Units 1 to 3. The dose rates on the water surface were 0.4 mSv/h of the Unit 1's trench and 1,000 mSv/h of the Unit 2's trench. The rate of the Unit 3's trench could not measure because of the rubble. (Around 15:30 March 27th)
- The pump for the fresh water injection to RPV of Unit 3 was switched from the Fire Pump Truck to the temporary motor-driven pump. (20:30 March 28th)
- In the samples of soil collected on 21 and 22 March 2011 on the site (at 5 points) of Fukushima Dai-ichi NPS, plutonium 238, 239 and 240 were detected (23:45 March 28th announced by TEPCO). The concentration of the detected plutonium was at the equivalent level of the fallout (radioactive fallout) that was observed in Japan concerning the past atmospheric nuclear testing, i.e. at the equivalent level of the normal condition of environment, and was not at the level of having harmful influence on human body.

News Release

2. Action taken by NISA (March 28th)

Regarding the delay in the reporting of the water confirmed outside of the turbine buildings, NISA directed TEPCO to accomplish the communication in the company on significant information in a timely manner and to inform it in a timely and appropriate manner.

For more information:

NISA English Home Page

http://www.nisa.meti.go.jp/english/index.html

Extract

March 28, 2011 Nuclear and Industrial Safety Agency

Seismic Damage Information (the 59th Release) (As of 15:00 March 28th, 2011)

Nuclear and Industrial Safety Agency (NISA) confirmed the current situation of Onagawa NPS, Tohoku Electric Power Co. Inc.; Fukushima Dai-ichi and Fukushima Dai-ni NPSs, Tokyo Electric Power Co. Inc. (TEPCO); Tokai Dai-ni NPS, Japan Atomic Power Co. Inc. as follows:

Major updates are as follows.

- 1. Nuclear Power Stations (NPSs)
- Fukushima Dai-ichi NPS
- 2. Action taken by NISA (March 28th)
- 13:50 Receiving the suggestion by the special meeting of Nuclear Safety Commission (Stagnant water on the underground floor of the turbine building at Fukushima Dai-ichi Plant Unit 2), NISA directed TEPCO orally to add the sea water monitoring points and carry out the underwater monitoring.
- < Possibility on radiation exposure (workers)>

All three workers who have been monitoring in the National Institute of Radiological Sciences since 24 March have discharged from the hospital around the noon 28 March.

For more information:

NISA English Home Page

http://www.nisa.meti.go.jp/english/index.html

Fukushima Di-ichi Nuclear Power Station Major Parameters of the Plant (As of 6:00, March 29th)

Unit No.	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Situation of water injection	Injecting freshwater via the Water Supply Line. Flow rate of injected water: 141 @/min (As of 20:00, March 28th) temporary measuring instrument	Injecting freshwater via the Fire Extinguish Line. Flow rate of injected water :117 ℓ /min (As of 0:12, March 28th) temporary measuring instrument	Injecting freshwater via the Fire Extinguish Line. Flow rate of injected water: 200 ϱ /min (As of 20:32, March 28th) temporary measuring instrument	Under shutdown	Under shutdown	Under shutdown
Reactor water level	Fuel range A: -1,600mm Fuel range B: -1,600mm (As of 4:00, March 29th)	Fuel range A: -1,500mm (As of 4:00, March 29th)	Fuel range A:-1,900mm Fuel range B:-2,300mm (As of 4:45, March 29th)	#2	Shutdown range measurement 2,363mm (As of 6:00, March 29th)	Shutdown range measurement 1,965mm (As of 6:00, March 29th)
Reactor pressure	0.392MPa g(A) 0.502MPa g(B) (As of 4:00, March 29th)	-0.027MPa g (A) -0.029MPa g (B) (As of 4:00, March 29th)	0.034MPa g (A) -0.090MPa g (C) (As of 4:45, March 29th)	#2	0.010MPa g (As of 6:00, March 29th)	0.005MPa g (As of 6:00, March 29th)
Reactor water temperature	(Impossible collection due to low	system flow rate)		#2	29.8°C (As of 6:00, March 29th)	48.9℃ (As of 6:00, March 29th)
Reactor Pressure Vessel (RPV) temperature	Feedwater nozzle temperature: 323.3°C Temperature at the bottom head of RPV: 139.4°C (As of 4:00, March 29th)	Feedwater nozzle temperature: 153.7°C Temperature at the bottom head of RPV: 77.7°C (As of 4:00, March 29th)	Feedwater nozzle temperature: 61.5°C (under survey) Temperature at the bottom head of RPV: 120.9°C (As of 4:45, March 29th)	Unit 5,6	lement (fuel) insi	
D/W*1 Pressure, S/C*2 Pressure	D/W: 0.285MPa abs S/C: 0.285MPa abs (As of 4:00, March 29th)	D/W: 0.100MPa abs S/C:Down scale (under survey) (As of 4:00, March 29th)	D/W: 0.1085MPa abs S/C: 0.1792MPa abs (As of 4:45, March 29th)	#2		
CAMS*3	D/W: 3.60×10 ¹ Sv/h S/C: 2.00×10 ¹ Sv/h (As of 4:00, March 29th)	D/W: 4.04×10^{1} Sv/h S/C: 1.37×10^{0} Sv/h (As of 4:00, March 29th)	D/W: 2.92×10^{1} Sv/h S/C: 1.18×10^{0} Sv/h (As of 4:45, March 29th)	#2		
D/W*1 design operating pressure D/W*1 maximum	0.384MPa g(0.485MPa abs)	0.384MPa g(0.485MPa abs)	0.384MPa g(0.485MPa abs)	#2		
D/W*1 maximum operating pressure	0.427MPa g(0.528MPa abs)	0.427MPa g(0.528MPa abs)	0.427MPa g(0.528MPa abs)		_	
Spent Fuel Pool water	#1	45℃ (As of 4:00, March 29th)	#1	#1	37.1℃ (As of 6:00, March 29th)	22.0℃ (As of 6:00, March 29th)
FPC skimmer level	4,500mm (As of 4:00, March 29th)	5,700mm (As of 4:00, March 29th)	#1	5,250mm (As of 4:45, March 29th)	#2	
Power supply	Receiving external power supply ((P/C*4 2C)	Receiving external power supply	(P/C4D)	Receiving ex supply	ternal power

Other information	Unit3: Collecting the data of RPV temperature and continuing survey for transitional situation Unit2: Confirmed the indicated value of S/C Pressure but continuing to survey the transition of condition	Common pool: about 34 °C (As of 8:00, March 28th)	Unit5:SHC mode (From 11:47 March 28th)	Unit6:SHC mode (From . 18:06 March 28th)
		2011)	<u></u>)

Pressure conversion

Gauge pressure (MPa g) = Absolute pressure (MPa abs) – Atmospheric pressure (Normal atmospheric pressure 0.1013MPa) Absolute pressure (MPa abs) = Gauge pressure (MPa g) + Atmospheric pressure (Normal atmospheric pressure 0.1013MPa)

: Dry Well *1 D/W

: Suppression Chamber S/C

CAMS: Containment Atmospheric Monitoring System

: Power Center P/C

: Measuring instrument malfunction: Except from data collection #1

#2

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 1

(As of 06:00 March 29th, 2011)

Current Conditions: Fresh water is being injected to the core

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 2

(As of 06:00 March 29th, 2011)

Major Events after the earthquake

*2 Emergency Diesel Generator *3 Primary Containment Vessel *4 Suppression Pool

- 11th 14:46 Under operation, Automatic shutdown by the earthquake
- 11th 15:42 Report based on the Article 10 (Total loss of A/C power)
- 11th 16:36 Occurrence of the Article 15 event (Inability of water injection of the Emergency Core Cooling System)
- 13th 11:00 Started to vent
- 14th 13:25 Occurrence of the Article 15 event (Loss of reactor cooling functions)
- 14th 16:34 Started to inject water to the Reactor Core
- 14th 22:50 Occurrence of the Article 15 event (Unusual rise of the pressure in PCV)
- 15th 00:02 Started to vent
- 15th 06:10 Sound of explosion
- 15th around 06:20 Possible damage of the suppression chamber
- 20th 15:05~17:20 Approximately 40 ton seawater injection to the Spent Fuel Pool (SFP) via the Fuel Pool Cooling Line (FPC)
- 20th 15:46 Power Center received electricity.
- 21st 18:22 White smoke generated. The smoke died down and almost invisible at 07:11 March 22nd.
- 22nd 16:07 Injection of around 18 tons of seawater to SFP
- 25^{th} $10:30\sim12:19$ Sea water injection to SFP via FPC
- 26th 10:10 Started to inject fresh water to the Reactor Core
- 26th 16:46 Lighting in the Central Control Room was recovered.
- 27th 18:31 Switched to the water injection to the core using a temporary motor-driven pump.

Current Conditions: Sea water is being injected to the Spent Fuel Pool and fresh water is being injected to the core

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 3 (As of 06:00 March 29th, 2011)

Current Conditions: Sea water is being injected to the Spent Fuel Pool and fresh water is being injected to the core

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 4

(As of 06:00 March 29th, 2011)

Major events after the earthquake

- In periodic inspection outage when the earthquake occurred.
- 14th 04:08 Water temperature in the Spent Fuel Pool (SFP), 84°C
- 15th 0 6:14 Partial damage of wall in the 4th floor confirmed
- 15th 09:38 Fire occurred in the 3rd floor. (12:25 extinguished)
- 16th 05:45 Fire occurred. TEPCO couldn't confirm any fire on the ground. (06:15)
- 20th 08:21~09:40 Water spray over SFP by Self-Defense Force
- 20th around 18:30∼19:46 Water spray over SFP by Self-Defense Force
- 21st 06:37 ~ 08:41 Water spray over SFP by Self-Defense Force
- 21st about 15:00 Work for laying cable to Power Center was completed.
- 22nd 10:35 Power Center received electricity 22nd 17:17~20:32 Water spray by Concrete Pump Truck
- 23rd 10:00~13:02 Water spray by Concrete Pump Truck
- 24th 14:36~17:30 Water spray by Concrete Pump Truck
- 25th 06:05~10:20 Sea water injection to SFP via the Fuel Pool Cooling Line (FPC)
- 25th 19:05~22:07 Water spray by Concrete Pump Truck
- 27th 16:55 ∼ 19:25 Water spray by Concrete Pump Truck

*1 Residual Heat Removal System

- *2 Emergency Diesel Generator
- *3 Reactor Pressure Vessel

Current Conditions: No fuel is in RPV*3. Sea water is being injected to the Spent Fuel Pool.

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 5 (As of 06:00 March 29th, 2011)

Conditions of Fukushima Dai-ichi Nuclear Power Station Unit 6 (As of 06:00 March 29th, 2011)

March 29th, 2011

Fukushima Dai-ichi Monitoring points

① North side of main office building(approx. 0.5km from Unit 2 in northwest direction)

2 Near Gymnasium(East side of MP-5) (approx. 0.9km from Unit 2 in westnorthwest direction)

(3) Near West Gate (near MP-5) (approx. 1.1km from Unit 2 in west direction)

Front of near Main Gate (near MP-6) (approx. 1.0km from Unit 2 in westnorthwest direction) (5) Front of Earthquake Isolation Building (approx. 0.5km from Unit2 in northwest dirction)

Monitoring points																								
Reading time	0:00	0:10	0:20	0:30	0:40	0:50	1:00	1:10	1.00	1.00		(3)											
MC Reading(μ Sv/h)	117.8	117.7	117.7	117.5	117.5	117.5	117.5	117.4		1:30	1:40		2:00	2:10	2:20	2:30	2:40	2:50	3:00	3:10	3:20	3:30	3:40	- 50
neutron	N.D	N.D	N.D	_N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	117.1 N.D	117.2	117.1	116.9	116.7	116.7	116.8	116.6	116.5	116.4	116.4	116.3	3:50 116,3
SMOB(mSv/h)*1 Car MG(μ Sv/h)*2	1,150			1,140			1,150		_	1.150		- IN.D	N.D 1,150	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
WG(μSy/h)*3	181 85.4			182			180		_	182			180		-	1,140		_=_	1,130	_=_		1,130		
wind direction	NW	- NW	WNW	85.5 WNW			85.4			85.0			83.7			85.4		-=-	182	_=_		180		
wind speed (m/s)	0.6	0.7	0.6	0.5	NW	NNW	NW	SW	SSE	SE	NW	NNW	NW	W	WNW	WNW	w	-	85.0	14/		85.3		
*1: SMOB : South S	ide of Ma		Building	0.5 }	0.3	0.3	0.4	0.4	0.4	0.3	0.4	0.6	0.5	1.0	1.2	1.2	1.1	1.0	0.9	1.0	- W	WSW	NW	W
#2: MC: Main C-+-			шанопъ																0.5 1	1.0	1.2	_ 1.0]	0.8	0.5

*2: MG: Main Gate

*3: WG:West Gate

Monitoring points																	•							
Reading time	4:00	4:10	4:20	4:30	4:40	4:50	5:00	E 10	T = 55			(3)											
MC Reading(μ Sv/h)	116.2	116.2	175.1	150.0	175.5	173.0	182.0	5:10 155.0			5;40	5:50	6:.00	6:10	6:20	6:30	6:40	6:50	7:00	7:10	7:20	3 851	·	
neutron	N.D	134.3 N.D	127.0	126.6	128.5	127.6	122.3	120.1	120.0	118.2	117.8	117.6	117.4	1170			1,00							
SMOB(mSv/h)*1	1,140	-		1,200			1.200		IN.D	N.D 1,190	N.D	N.D_	N.D	N.D	117.4 N.D	116.7	116.6							
Car MG(μ Sv/h) *2	181			201			236			191			1,160			1,130	-	_	1,190			1.300	N.D	N.D
WG(μSv/h)*3	85.2			119			152			96.8			186			183		1	183			181		
wind direction	W	NE	N	W	W	W	WSW	W	w	W W	WSW		96.1			88.1	-		85.5			86.7		
wind speed (m/s)	0.6	0.4	0.3	0.3	0.4	0.6	0.8	0.8	0.8	0.7	0.8	0.9		WSW	W	W	W	WSW	WSW	WSW	WNW	NNE	SE	
Monitoring points										0.7 1	0.0	0.9	0.8	1.0	0.7	0.8	0.8	0.5	0.5	0.4	0.2	0.4	0.6	10

Monitoring points	0.0 0.0 0.0 0.4 0.2 0.4 0.6 1.0
Reading time	8:00 8:10 8:20 8:30 8:40 8:50 9:00 9:10 9:20 9:30 9:40 0:50 0:00 0:00 0:00 0:00 0:00 0:00 0
MC Reading(μ Sv/h)	132.7
neutron	ND 10.33 71.00 71:10 71:20 11:30 11:40 11:50
SMOB(mSv/h)*1	1.250
Car MG(μ Sv/h) *2	181
WG(μ Sv/h) +3	101
wind direction	ESE
wind speed (m/s)	0.8

March 28th, 2011

Fukushima Dai-ichi Monitoring points

① North side of main office building (approx. 0.5km from Unit 2 in northwest direction)

② Near Gymnasium(East side of MP-5) (approx. 0.9km from Unit 2 in westnorthwest direction)

3 Near West Gate (near MP-5) (approx. 1.1km from Unit 2 in west direction)

4 Front of near Main Gate (near MP-6) (approx. 1.0km from Unit 2 in westnorthwest direction)

(5) Front of Earthquake Isolation Building (approx. 0.5km from Unit2 in northwest direction)

Monitoring points					-								<u> </u>										-	
Reading time	12:00	12:10	12:20	12:30	12:40	12:50	13:00	13:10	12.00	10.00	10.46	<u> </u>	3)											
MC Reading(μ Sv/h)	125.4	125.4	125.2	125.1	125.0	124.9	124.7	124.7	13:20 124.6	13:30 124.3	13:40	13:50	14:00	14:10		14:30	14:40	14:50	15:00	15:10	15:20	15:30	15:40	15:50
neutron	N.D	N.D	N.D	N.D	N.D	ND	N.D	N.D	N.D	N.D	123.9 N.D	124.0 N.D	123.8	123.7	123.5	123.4	123.2	123.3	123.1	123.0	123.0	122.8	122.8	122.6
SMOB(mSv/h)*1	1,300		-	1,310			1,290			1.250	IN.D	IN.D	N.D 1.250	_ N.D	N.D	N.D	N.D	_N.D	N.D	N.D	N.D	N.D	N.D	N.D
Car MG(μ Sv/h) +2	195			192		_	192			191			188			1,280			1,260			1,290		_
WG(μSv/h)*3 wind direction	88.7			87.1			87	1		86.9			87.2			191			191			188		
wind speed (m/s)	SSE	SE	<u>E</u>	E I	E	ESE	E	SE	SW	S	ESE	NW	S	ESE	- F	86.9			85.4			85.4		
	2.8	3.0	4.3	2.4	3.5	3.8	3.1	3.0	2.4	2.1	2.0	3.2	2.7	2.3	3.4	3.2	2.3		- S	SE	SE	_ <u>E</u>	_ S _	SSW
*1: SMOB : South S	ide of Ma	im Office	Building												<u> </u>	3.2. (2.0 }	2.4	2.1 [2.0	2.1	1.8	1.9	1.3

*2: MG: Main Gate

*3: WG:West Gate

Monitoring points					-								3\							_				
Reading time	16:00	16:10	16:20	16:30	16:40	16:50	17:00	17.10	17.00	17.00	47.47		3)											
MC Reading(μ Sv/h)	122.7	122.5	122.5	122.5	122.4	122.2	121.9	17:10 122.0	17:20 121.9	17:30 121.8	17:40	17:50		18:10		18:30	18:40	18:50	19:00	19:10	19:20	19:30	19:40	19:50
neutron	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	121.8	121.7	121.6	121.6	121.7	121.4	120.8	120.8	120.7	120.6	120.4	120.4	120.5	120.4
SMOB(mSv/h)*1	1,280			1,300			1,240		14.0	1.230	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Car MG(μSv/h)+2	188			186		_	188			189			1,210 186			1.230			1,190			1,180	_	
WG(μSv/h)*3	84.1			85.5			84.6		_	83.7			82.4	-		185			183			184		_
wind direction	E	<u> </u>	SSE	S	ESE	E	SSE	ESE	SE	E	SW	SSW	WSW	sw	SSE	83.9			84			85	_	
wind speed (m/s)	1.7]	1.9	2,3	1.3	1.6	1.2	1.9	0.9	1.2	0.8	0.6	0.6	0.5	0.4	0.3	N O.E.	<u> </u>	NW	WSW	SW	SW	NW	NW	WSW
Monitoring points												5.0	0.0	0.4 (0.3	0.5	0.3	0.6	0.5	0.4	0.7	0.6	0.5	0.7

Worldoring points	i																							
Reading time	20:00	20:10	20:20	20:30	00.40	00.00						(3)											
Reading(μ Sv/h)	120.4				20:40	20:50	21:00	21:10	21:20	21:30	21:40	21:50	22:00	22:10	22:20	22:30	22:40	22:50	20.00	20.12				
IVIU		120.3	120.0	120.1	118.6	120.0	120.0	119.9	120.0	119.9	118.1	119.7	119.6	118.1	119.6				23:00	23:10	23.20	23:30	23:40	23:50
neutron	N.D	N.D.				118.0	117.8	118.0	117.8	117.9	117.8	117.6	117.8	1177										
SMOB(mSv/h)*1	1,180	_		1,170			1 170		14.0			IV.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
Car MG(µ Sv/h) ∗2	183			185			100			1,160			1,160]	1,160	~- T	_	1.150			1.150	-,,,,,,	
WG(μSv/h)*3	84.4		-	0.5			183			182			182	- 7		181	_		100					
wind direction				65			85.4		i	84.7		_	85.4	_		85.5	-		180			181		<u> </u>
	NW	N.	W	WNW	SW	W	WSW	NW	WSW	WSW	WNW	WNW	WSW	10/	TAZA ISAZ	33.0			85.5			83.7	~ 7	
wind speed (m/s)	0.7	0.4	0.6	0.7	0.8	1.0	0.9	0.8	0.8	11	1 1	771177		**	WNW	VV	WSW	W	WNW	WNW	WSW	SSW	W	NW
_								0.0	0.0	1,1 }		1.0	0.8	1.3	1.1	0.8	0.9	0.8	0,8	0.9	0.9	0.7	- 10.4	
																					- 0.0	<u> </u>	0.41	0.5

Dose Rate in the Fukushima Dai-ichi NPS

Fukushima Dai-ichi NPS

as of 10:00, March 29th, 2011 ///// Environment Surveilance Area (5) Earthquake Isolation Site Boundary Building (as of 14:30 March (2) Near Gymnasium 24th, 2011) (as of 9:10 March 17th. 427.0 µSv/h 2011) (Measured by monitoring 371.9µSv/h car) (Measured by monitoring car) (3) Near West Gate (as of 8:00 March 29th, (1) North side of main office building 2011) MF (as of 16:30 March 21st. 132.7µSv/h (Measured by monitoring car) 2011) 101.0µSv/h 2015.0 µSv/h (Measured by monitoring car) (Measured by transportable monitoring post) about 0.9km (7) Main Gate (6) South side of main (as of 8:00 March 29th. office building 2011) (as of 8:00 March 29th. 181µSv/h 2011) (Measured by transportable 1250 µSv/h monitoring post) (Measured by transportable monitoring post) (4) Front of near Main Gate (near MP-6) (as of 11:00 March 26th, 2011) 170.7µSv/h (Measured by monitoring car) <Ref.Value :0.033~0.050uSv/h>

Fukushima Dai-ni (TEPCO's Monitaring Post)

March 29th, 2011																								
monitoring point	0:00	0:10	0:20	0:30	0:40	0:50	1:00	1:10	1:20	1:30	1.40	1 50	Y											
MP1 (μ Sv/h)	8.707	8.693	8.710	8.697	8.697	8.673	8.683	8.693	8.633	8.693	1:40 8.967						2:40	2:50	3:00	3:10	3:20	3:30	3:40	3:50
MP2(μ Sv/h)	4.667	4.647	4.670	4.657	4.633	4.657	4.637	4.640	4.613	4.657	4.730	10.027 5.677	9.610	9.483	9.467	9.933	9.433	9.150	8.970	8.873	8.873	8.780	8.800	8,830
MP3(μ Sv/h)	8.220	8.227	8,217	8.180	8.253	8.210	8.177	8.180	8.237	8.217	8.207	8.560	5.633	5.390	5.420	5.833	5.437	5.047	4.920	4.867	4.817	4.823	4.797	4:813
MP4(μSv/h)	6.227	6.237	6.197	6.227	6.210	6.233	6.203	6.173	6.200	6.190	6,220	6.497	8.977 7.193	8.620	8.763	8.777	8.717	8.463	8.403	8.353	8.353	8.303	8.317	8,333
MP5(μ Sv/h)	5.693	5.693	5.693	5.693	5.693	5.693	5.667	5.693	5.673	5.593	5.667	5,693	6.547	6.643 6.180	6.893	6.713	6.817	6.710	6.650	6.543	6.443	6.353	6.393	6.397
MP6(μSv/h)	6.817	6.850	6.843	6.843	6.810	6.837	6.823	6.837	6.833	6.807	6.827	6.997	7.197	7.057	6.167 6.947	6.187	6.373	6.327	6.367	6.180	6,087	5.987	5.993	6.087
MP7(μ Sv/h)	N.D	N,D	N.D	N.D	N.D	И.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	7.037 N.D	0.947 N.D	6.910	7.080	7.177	7.177	7.093	7.043	7.010	7.050	7.050
wind direction	WNW	W	W	W	WSW	SW	ESE	ESE	SW	SW	SSE	E	ESE	ESE	ESE	N.D	N.D	N.D	N,D	N.D	N.D	N.D	N.D	N.D
wind speed (m/s)	5.8	6.8	5.9	5,1	0.8	0.5	0.8	1.9	2.3	1.1	0.7	0,7	1.7	1.7	0.3	0.1	- 5	NNW	NE	ENE	NNE	E	NE	ENE
M 2011 - 0044														1,,,1	0.0	0.1	0.6	0.6	0.9	0.8	0.9	0.7	1.6	1.7

March 29th, 2011																					·		1.0	J
monitoring point	4:00	4:10	4:20	4:30	4:40	4:50	5:00	5:10	5:20	5:30	F. 10	F 50			γ	,			_					
MP1(μSv/h)	8.837	9.013	9.220	9.023	8.973	9.090	9.060	9.203	9.017	****		-		6:10		6:30	6:40	6:50	7:00	7:10	7:20	7:30	7:40	7:5
MP2(<i>μ</i> Sv/h)	4.813	4.987	5.323	5.030	4.970	5.053	5.113	5.110	5.000	8.923 4.893	8.743	8.823	8.827	8.813	8.837	8.783	8.803	8.763	8.717	8.717	8.693	8,683	8.677	8.630
MP3(μSv/h)	8.377	8.503	8.763	8.623	8.460	8.517	8.483	8.557	8.467	8.450	4.810 8.320	4.780	4.837	4.843	4.873	4.820	4.833	4.813	4.740	4.710	4.690	4.687	4.690	4.677
MP4(μ Sv/h)	6.470	6.623	6.927	6.793	6.623	6.627	6.643	6.770	6.623	6.503	6.480	8.287 6.410	8.330	8.377	8.363	8.360	8.343	8.350	8.293	8.210	8.203	8.163	8.210	8,203
MP5(μ Sv/h)	6.060	6.187	6.567	6.373	6.273	6.373	6.273	6.413	6.247	6.133	6.060	6.087	6.403	6.493	6.437	6.403	6.450	6.410	6.297	6.293	6.257	6.233	6.267	6.230
MP6(μSv/h)	6.993	7.160	7.413	7.253	7.207	7.293	7.320	7.160	7.143	7.107	7.053	7.057	6.087	6.087	6.087	5.993	5.993	5.893	5.787	5.787	5.767	5.747	5.787	5.793
MP7(-μ Sv/h)	N.D	N,D	N.D	N.D.	N.D	7.037 N.D	7.043	7.073	7.060	7.023	6.980	6.930	6.847	6.877	6.833	6.797	6.823	6.823						
wind direction	ENE	E	ESE	Е	WSW	SSW	ESE	ESE	ESE	ESE	SSE	SW	N.D.	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
wind speed (m/s)	1.4	1.6	1.9	0.6	0.5	0.9	1.1	1,5	1,5	11	1.0	0.9		SW	WSW	SW	SW	SSW	SW	SSE	ESE	SSE	SSE	SE
									· ···	' 1	1.0	0.9	0,9	8.0	2.2	3.4	3.8	2.8	1.2	1.8	1.5	23	2.1	

monitoring point	8:00	8:10	8:20	8:30	8:40	8:50	9:00	9:10	9:20	0.20	0.40	1 0.50	T											
MP1(μSv/h)	8.650					a. 0.00	0.007	9.10	9.20	9:30	9:40	9:50	10:00	10:10	10:20	10:30	10:40	10:50	11:00	11:10	11:20	11:30	11.40	7
MP2(μ Sv/h)	4.653									ļ	 	<u> </u>									71,20	11.00	11:40	1
MP3(μ Sv/h)	8.193										ļ													-
MP4(μSv/h)	6.230									 	 													┼
MP5(μSv/h)	5.793																							
MP6(μ Sv/h)	6.823									 														├-
MP7(μ Sv/h)	N.D		- -				-				<u> </u>											$-\!\!+$		<u> </u>
wind direction	E						-				<u> </u>													
nd speed (m/s)	2.2								<u> </u>															<u> </u>

Fukushima Dai-ni (TEPCO's Monitaring Post)

March 28th, 2011																							•	
monitoring point	12:00	12:10	12:20	12:30	12:40	12:50	13:00	13:10	13:20	13:30	13:40	13:50	14:00	14:10	14:20	14.00	14.40	1450						
MP1 (μ Sv/h)	9.080	9.073	9.070	9.053	9.043	9.053	9.010	9.043	9.033	9.053	9.030	9,017	9.000								15:20	15:30	15:40	15:50
MP2(μ Sv/h)	4.850	4.850	4.860	4.843	4.827	4.827	4.830	4.810	4.847	4.823				9.017	9.027	8,980	9.003	8.993	8.997	8.973	8.980	8.933	8.940	8.997
MP3(μSv/h)	8.570	8.573	8,573	8.573	8.530	8.543	8.540	8.527	8.543		4.823		4.823	4.807	4.770	4.827	4.810	4.787	4.810	4.807	4.793	4.787	4.783	4.807
MP4(μ Sv/h)	6,490	6.500	6,480	6.477	6.477	6.467	6.450			8.537	8.510	****	8.510	8.513	8.500	8.490	8.477	8.483	8.493	8.493	8.483	8.470	8,440	8.443
MP5 (μ Sv/h)	5.887	5.900	5.893	5.893	5.887	5.887		6.473	6.427	6.473	6.420	6.483	6.440	6.410	6.410	6.450	6.443	6.413	6.417	6.423	6.397	6.337	6.373	6.400
MP6(μ Sv/h)	7.110	7.113	7.097	7.097	7.067	7.090	5.893	5.893	5.893	5.887	5.893		5.893	5.893	5.893	5.893	5.893	5.833	5.893	5.853	5.493	5.833	5.893	5.847
MP7(μ Sv/h)	N.D.	N.D	N.D	N.D			7.077	7.063	7.080	7.087	7.073	7.087	7.080	7.063	7.077	7.063	7.067	7.067	7.030	7.060	7.053	7.027	7,010	7.017
wind direction	SSE	SSE			N.D	N,D	N.D	N.D	ND	N.D	N.D	N.D.	N.D	N.D										
wind speed (m/s)		SOE	SSE	SSE	SSE	SE	ESE	· SE	SE	SE	SE	SE	SE	ESE	E	ESE	E	E	SSE	SE	ENE	ENE	ENE	- IV.D
Willia speed (III/8)	5.7	4./	6.1	5.2	4.1	3.9	3.7	3.8	2.5	2.9	2.7	2.9	3,3	2.3	1,9	2.1	3.6	2.9	2.5	1.9	2.3			- N
																				1,5	2.3	2.2	1.7	0.2

March 28th, 2011																								
monitoring point	16:00	16:10	16:20	16:30	16:40	16:50	17:00	17:10	17:20	17:30	17:40	17:50	18:00	10.10	10.00	40.00				· ·				
MP1(μSv/h)	B.950	8.933	8,907	8.913	8.913	8.937	8.917	8.917	8.890	8.893	8.867							18:50	19:00	19:10	19:20	19:30	19:40	19:50
MP2 (μ Sv/h)	4.773	4.787	4.800	4.733	4.773	4.790	4.767	4.760	4.773	4.773		8.867	8.863	8.843	8.873	8.867	8.847	8,847	8.863	8.837	8.833	8.817	8.817	8.840
MP3 (μ Sv/h)	8.443	8.440	8,477	8.427	8,410	8.450	8.403	8.400	8,403	8.390	4.750	4.760	4,743	4.727	4.743	4.737	4.727	4.737	4.727	4.713	4.727	4.710	4.733	4.710
MP4(μ Sv/h)	6.420	6.387	6.363	6.370	6.367	6.363	6.363	6.377	6.353		8.407	8.377	-8.383	8.373	8.370	8.380	8.360	8.373	8.370	8.333	8.343	8.330	8,347	8.320
MP5(μ Sv/h)	5.840	5.793	5.833	5.793	5,793	5.793	5.787	5.787	5.787	6.363	6.353	6.323	6.333	6.363	6.340	6.313	6.323	6.330	6.310	6.323	6.317	6.337	6.307	6.337
MP6(μSv/h)	7.050	7.033	7.020	6.990	7,033	6,997	6.997	7.017	6.983	5.787	5.787	5.787	5.787	5.793	5.793	5.793	5.793	5.787	5.787	5.793	5.760	5.787	5.793	5.747
MP7(μ Sv/h)	N.D			6.970	6.990	6.990	6.970	6.947	6.977	6.987	6.957	6.970	6.953	6.977	6.967	6.960	6.940	6.937						
wind direction	S	NNW	SSW	9	SSW	SSW		N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	· N.D	N.D	N.D	N.D	N.D
wind speed (m/s)	1.1	0.0	1.4	0.6		3377	SSE	SE	- E	ESE	SSW	S	S -	S	S	S	\$	S	S	S	SSW	SSW	S	S
		- 0.0		0.0	1.6	1.7	2.1	2.3	0.9	0.5	1.6	0.8	1.5	1.7	2.4	1.1	1.5	1.3	2.2	2.2	2.2	2.0	3.1	2.9

March 28th, 2011																								
monitoring point	20:00	20:10	20:20	20:30	20:40	20:50	21:00	21:10	21:20	21:30	21:40	21:50	22.00	00.10	00.00						T			
MP1 (μ Sv/h)	8.800	8,787	8.763	8.823	8.790	8.747	8.753	8.780	8.783	8.770	8.770	8.747							23:00	23:10	23:20	23:30	23:40	23:5
MP2(μSv/h)	4.723	4.703	4.690	4.683	4.700	4.687	4.693	4.687	4.677	4.687	4.680		8.763	8.743	8.740	8.743	8.713	8.720	8.707	8.697	8.727	8.703	8.703	8.687
MP3(μSv/h)	8.343	8.340	8.340	8.333	8.240	8.343	8.257	8,323	8.277	8,300	8.300	4.663	4.680	4.673	4.653	4.663	4.663	4.667	4.673	4.673	4.667	4.653	4.653	4.64
MP4(# Sv/h)	6.323	6.310	6.303	6.293	6.300	6.283	6.280	6.267	6.273	6.287	6.287	8.283	8.233	8.300	8.273	8.280	8.257	8.260	8.250	8.203	8.267	8.240	8.213	8.193
MP5(μ Sv/h)	5.760	5.793	5.787	5.787	5.787	5.747	5.733	5.693	5.693	5.747		6.267	6.243	6.263	6.257	6.267	6.273	6.243	6.250	6,247	6.210	6.230	6.233	6.243
MP6(μ Sv/h)	6.903	6.937	6,917	6.930	6.903	6.890	6.917	6.923	6.920	6,920	5.693	5.733	5.693	5.963	5.963	5.693	5.687	5.693	5.693	5.693	5.693	5.693	5.687	5.693
MP7(μSv/h)	N.D	N.D	N.D	N.D	N.D.	N.D	N.D	N.D	N.D		6.900	6.917	6.900	6.880	6.863	6.867	6.877	6.860	6.877	6.863	6.843	6.850	6.867	6.827
wind direction	S	SSW	SSW	SSW	5	W	WNW	WNW		N.D	N.D	N.D	N,D	N.D	N,D	N.D								
wind speed (m/s)	3.0	1.9	1.6	2.2	1.4	1 0			WNW	WNW	SSW	W	W	WSW	WSW	WSW	WSW	W	W	WNW	WNW	NW	WNW	NW
			- 1.0	2.2	- '	1.8	1.6	1,8	2.5	1,7	1.1	1.5	2.3	4.2	6,2	3.2	3.6	3,1	4.1	3.9	3.9	4.8	5.4	5.2

MP1 : 8. 650 µ Sv/h (as of 8:00 March 29th) (Ref. Value: 0. 035 \sim 0. 054 μ Sv/h) Location of Monitoring Post MP2: 4.653 μ Sv/h (as of 8:00 March 29th) (Ref. Value: 0.042~0.062 \(\mu \) Sv/h) MP3: 8. 193 μ Sv/h (as of 8:00 March 29th) (Ref. Valur: 0. 036~0. 052 μ Sv/h) MP4: 6.230 μ v/h (as of 8:00 March 29th) (Ref. value: $0.036 \sim 0.052 \,\mu \, \text{Sv/h}$) MP5 : 5. $793 \mu \text{ Sv/h}$ (as of 8:00 March (29th) (Ref. Value: 0.041 \sim 0.058 μ Sv/h) MP6: 6.823 μ Sv/h (as of 8:00 March 29th) (Ref. value: 0.044 \sim 0.063 μ Sv/h) MP7 : 3.870 μ Sv/h (as of 12:00 March 28th) (Ref. Value: 0.043~0.062 μ Sv/h)

Range of normal average value	Company	NPS						:						
0.023~0.027	Hokkaido Electric Power Co.		0:00	1:00	2:00	3:00	·	March 2	8th, 2011					emit o
		Tomari NPS	0.025	0.025	0.025		4:00	5:00	6:00	7.00	T			unit: #S
0.024~0.060	Tohoku Electric Power Co.	Unagawa NPS	0.74	0.74		0.025	0.025	0.025	0.025	7:00	8:00	9.00	10:00	
0.012~0.060		Higashidori NPS	0.016	0.017	0.73	0.73	0.73	0.73		0.025	0.024	0.024		11:00
0.033~0.050		Fukushima Dai-ichi ^Ж	128.0		0.018	0.017	0.018	0.018	0.72	0.72	0.72	0.024	0.024	0.02
.036~0.052	Tokyo Electric Power Co.	Fukushima Dai-ni	8.963	127.5	127.1	126.7	126.2		0.017	0.017	0.017		0.71	0.70
.011~0.159		Kashiwazaki kariwa NPS		8.930	8.910	8.837	8.817	125.7	125.8	125.1	124,9	0.018	0.017	0.017
.036~0.053	Japan Atomic Power Co.	Tokai Dai-ni NPS	0.064	0.064	0.065	0.065	0.065	8.787	8.787	8.777		140.4	128.1	126.1
.039~0.110		Tsuruga NPS	0.740	0.736	0.739	0.731		0.065	0.065	0.064	8.710	8.660	8.613	8.600
.064~0.108	Chubu Electric Power Co.	Hamaoka NPS	0.073	0.073	0.072	0.073	0.733	0.723	0.729	0.726	0.064	0.064	0.064	
0.0207~0.132	Hokuriku Electric Power Co.	Shike NPS	0.077	0.078	0.077	0.077	0.072	0.073	0.073	0.075	0.723	0.718	0.723	0.064
		Shimane NPS	0.032	0.032	0.032	0.032	0.077	0.077	0.077	0.075	0.074	0.072	0.073	0.724
0.070~0.077		Mihama NPS	0.031	0.031	0.029	0.032	0.032	0.032	0.032		0.077	0.077	0.076	0.072
0.045~0.047	Kansai Electric Power Co.	Takahama NPS	0.073	0.071	0.071	0.029	0.030	0.030	0.030	0.032	0.032	0.032	0.032	0.076
0.036~0.040		Ooi NPS	0.042	0.042	0.041		0.072	0.072	0.071	0.030	0.029	0.030	0.030	0.032
0.011~0.080	Shikaku Electeic Power Co.	lkata NPS	0.036	0.036	0.037	0.042	0.041	0.042	0.042	0.072	0.073	0.073	0.073	0.030
0.023~0.087		Genkai NPS	0.014	0.015	0.014	0.037	0.037	0.037	0.037	0.042	0.043	0.043	0.043	0.072
0.034~0.120	Kyushu Electric Power Co.		0.026	0.027	0.026	0.015	0.014	0.015	0.015	0.038	0.036	0.036		0.043
0.009~0.069		Sendai NPS	0.037	0.038	0.042	0.028	0.026	0.026	0.026	0.014	0.014	0.014	0.034	0.034
0.009~0.071		Japan Nuclear Fuel Reprocessing Plant	0.016	0.016	0.040	0.038	0.038	0.037	0.037	0.026	0.026	0.027		0.015
XThere could be small devicate	n on \$5	Japan Nuclear Fuel Plant Disposal	0.020	0.020	0.016	0.017	0.016	0.016		0.038	0.037	0.037	0.026	0.028
a there could be small deviaut	an on the monitoring time and	Japan Nuclear Fuel Plant Disposal area because of operational situation conc	erning with da	a of Eulosek	0.020	0.020	0.020	0.021	0.016	0.016	0.016	0.016	0.038	0.035
			2 13107 021	- or Pukush	lma Dai-ichi	NPS		0.021	0.020	0.020	0.020		0.016	0.016
Range of normal average value	Company	NDO										0.020	0.020	0.020

ange of normal average value	Company	NPS										0.020	0.020	0.
023~0.027	Hokkaida Eleatria Barris B	<u></u>	12:00	13:00	1400			March 2	Reb. 2011		<u> </u>			
024~0.060	Hokkaido Electric Power Co.		0.025		14:00	15:00	16:00	17:00						_
012~0.060	Tohoku Electric Power Co.	Onagawa NPS	0,70	0.69	0.024	0.024	0.024	0.023	18:00	19:00	20:00	21:00		
033~0.050		Higashidori NPS	0.018	0.017	0.69	0.69	0.68	0.68	0.024	0.024	0.023	21.00	22:00	23:0
036~0.052	Tokyo Electric Power Co.	Fukushima Dai−ichi ^Ж	125,4	124.7	0.017	0.017	0.017	0.017	0.68	0.68	0.68	0.024	22.00	4
011~0.159	Tokyo Electric Power Co.	Fukushima Dai-ni	8.570	8.540	123.8	123.1	122.7	121.9	0.017	0.017	0.017	0.68		
036~0.053		Kashiwazaki kariwa NPS	0.064		8.510	8.493	8.443		121.6	120.7	120.4	100.017		
039~0.110	Japan Atomic Power Co.	Tokai Dai-ni NPS	0.717	0.065	0.065	0.064	0.064	8.400	B.383	8.370	8.343	120.0	****	
	<u>l</u>	Tsuruge NPS	0.072	0.717	0.717	0.709	0.708	0.064	0.066	0.065	0.065	8.257	THE PERSON NAMED IN	- Table 20
	Chubu Electric Power Co.	Hamaoka NPS	0.072	0.073	0.073	0.072	0.073	0.708	0.706	0.701	0.698	0.065		
0207~0.132	Hokuriku Electric Power Co.	Shika NPS	0.076	0.076	0.076	0.076	0.076	0.072	0.073	0.073		0.697		
028~0.130	Chugoku Electric Power Co.	Shimane NPS		0.031	0.033	0.033	0.032	0.076	0.076	0.076	0.072	0.074	- A - A - A - A - A - A - A - A - A - A	
070~0.077	·	Mihama NPS	0.030	0.030	0.030	0.030		0.033	0.033	0.033	0.076	0.076 廢	SPECIAL CONTRACTOR OF THE PARTY	
045~0.047	Kansai Electric Power Co.	Takahama NPS	0.072	0.073	0.071	0.072	0.030	0.030	0.030	0.030	0.033	0.033 穩	P (2) 15	TO THE STATE OF
036~0.040		Ooi NPS	0.042	0.042	0.042	0.043	0.071	0.071	0.072	0.030	0.030	0.030	4 (1 () () () () () ()	Tac Service
011~0.080	Shikoku Electeic Power Co.	Ikata NPS	0.034	0.034	0.034	0.034	0.043	0.043	0.042		0.072	0.072	ALPHANE (S)	2000
023~0.087	Kyushu Electric Power Co.	Genkai NPS	0.014	0.015	0.014	0.015	0.034	0.034	0.035	0.043	0.042	0.043	A STATE OF	4
034~0.120	Listaglia Figoriac & DMB1 CD.	Sendai NPS	0.026	0.026	0.027	0.015	0.015	0.014	0.013	0.034	0.034	0.035		发生的
009~0.069			0.038	0.040	0.037		0.026	0.025	0.026	0.013		0.014		APPLICATION OF THE PROPERTY OF
009~0.071	Japan Nuclear Fuel Limited	Japan Nuclear Fuel Reprocessing Plant	0.016	0.016		0.038	0.036	0.035	0.036	0.026	0.025	0.027	The state of the s	TYPE ST
There could be small deviation	n on the monitoring time and	Japan Nuclear Fuel Plant Disposal area because of operational situation conce	0.020	0.021	0.016	0.016	0.016	0.016		0.037	0.03.7	0.039	Zo de la	40000
	same and a	nea because or operational situation conce	erning with da	ta of Fukushi	im- D.	0.021	0.021	0.021	0.016	0.016	0.016	0.010 (684)		和時間