

International Atomic Energy Agency

The Nuclear Fuel Cycle and its Market An Overview

Hans Forsström, Director Division of Nuclear Fuel Cycle and Waste Technology

Nuclear Fuel Cycle

Fuel Assembly

Typical Fuels

The Nuclear Fuel Cycle

Uranium Mining and Milling

Uranium Mining

Open Pit Mining Rossing Mine, Namibia

Underground Mining Palabora, South Africa (RTZ photo)

In Situ Leach Mining, Beverley, Australia (image: Heathgate)

ISL Mining – Wellfield (Cross Section)

Yellow Cake

Final Product of Milling Step – 70 to 80 % Uranium

Uranium Resources: Red Book 2007

- Is there enough?
- Are supplies secure?
- Can we meet demand?

Distribution of Identified Uranium Resources Worldwide (Is the Supply Secure?)

Total Identified Resources: 5.55 Mt (2007)

Uranium Market

- Competitive market several countries
- 1000 MWe reactor requires about 200 tU/y
- 66 500 tU required in 2006
- 40 000 tU produced
- Remainder from secondary sources
- Uncertainties in medium term
- Spot price volatility
- Mainly long term contracts

Conversion, Enrichment and Fuel Fabrication

Uranium Conversion

- Converts yellow cake (U3O8) to UF6 for enrichment or UO2 for fuel manufacturing
- Reconverts enriched UF6 to UO2
- Competitive market several countries
- Balanced market
- Small component of the cost

Enrichment: Gaseous Diffusion Process

Georges-Besse Enrichment Plant in France

Enrichment: Centrifuge Process

A Bank of Centrifuges at a Urenco Plant (image: Urenco)

Uranium Enrichment

- Uranium enrichment two technologies diffusion and centrifuges
- Large enrichment facilities in F, D, NL, RF, UK, USA, CH and J
- Competitive market fairly stable prices
- Demand 40 million SWU 1000MWe = 100 kSWU
- World capacity larger new capacity under construction
- Small spot market mainly long term contracts
- Secondary sources downblending HEU, re-enriching tails

Uranium Oxide after Conversion

Image: Cameco

UO₂ - Pellets and Fuel Assembly

Image: Cameco

Typical Fuels

FROM Zircon Sand to Zirconium Alloy Ingots at NFC, Hyderabad

Fuel Manufacturing

- Highly technical product with a lot of IPR
- Quality requirements very high
- Fuel adapted to specific reactors and to reactor operational status (including existing fuel and operating history)
- Each fuel batch requires licensing
- Fuel supply often coupled to reactor supply
- Change of suppliers possible, but takes time
- Strategy of many utilities to change supplier from time to time
- More than one supplier available for most fuels

Fuel Manufacturing (cont.)

- World demand 12000 tU/y
- 1000 MWe PWR requires 20 25 tU/y (depending on enrichment level)
- 1000 MWe PHWR requires about 130 tU/y (natural uranium)
- World manufacturing capacity sufficient

Utilities Purchasing Strategies

- Some buy each component of the fuel cycle separately (uranium, conversion, enrichment, manufacturing)
- Diversification of suppliers in each group
- Some buy full fuel assemblies with enriched uranium
- Significant amount of transports involved and often included in the contracts above
- A mixture of long term contracts and spot contracts

Nuclear Power - IAEA's Projection

Fuel Cycle Needs for IAEA Scenarios

	2008	2030	
		Low	High
Nuclear power (GWe)	373	473	748
Natural U (ktonnes)	67	65-80	100-125
Conversion UF6 (ktonnes U)	64	60-75	95-120
Enrichment (MSWU)	46	55-70	85-110
Fuel fabrication (ktonnes U)	12	11-13	17-20
MOX fabrication (ktonnes HM)	0.2	0.2	0.5
SF discharge (ktonnes HM	12	11-13	18-21
SF reprocessing (ktonnes HM)	1.5	1-2	4-6

IAEA Databases Related to Nuclear Fuel Cycle

Spent Fuel Composition after Irradiation

Basic Options for Spent Fuel Management

- 1. Classical closed cycle spent fuel reprocessed Pu+U recycled and waste disposed
- 2. Once-through cycle spent fuel stored and then disposed
- 3. Advanced closed cycle spent fuel reprocessed Pu+U+actinides recycled and waste disposed

Storage of Spent Fuel

Storage at the reactors or in separate local or national facilities

Spent Fuel Reprocessing

Disposal of HLW and Spent Fuel

- Technical solutions are available for geological repositories
- No disposal facility for HLW or spent fuel in operation
- Good progress for repositories for HLW or spent fuel in USA, Finland, Sweden and France, but no repository until ~2020
- So far only national approaches

Summary

- Nuclear fuel production involves several steps: Mining and milling, conversion, enrichment, re-conversion and fuel assembly manufacturing
- Up to enriched UF6 a commodity manufactured fuel highly technological
- Separate markets exist for each step
- Production/demand in balance today except for uranium secondary supplies cover balance
- Fuel services supplies expected to continue match demand
- Strong spot price fluctuations in uranium other steps more stable
- Back end services less or not developed

...atoms for peace.

