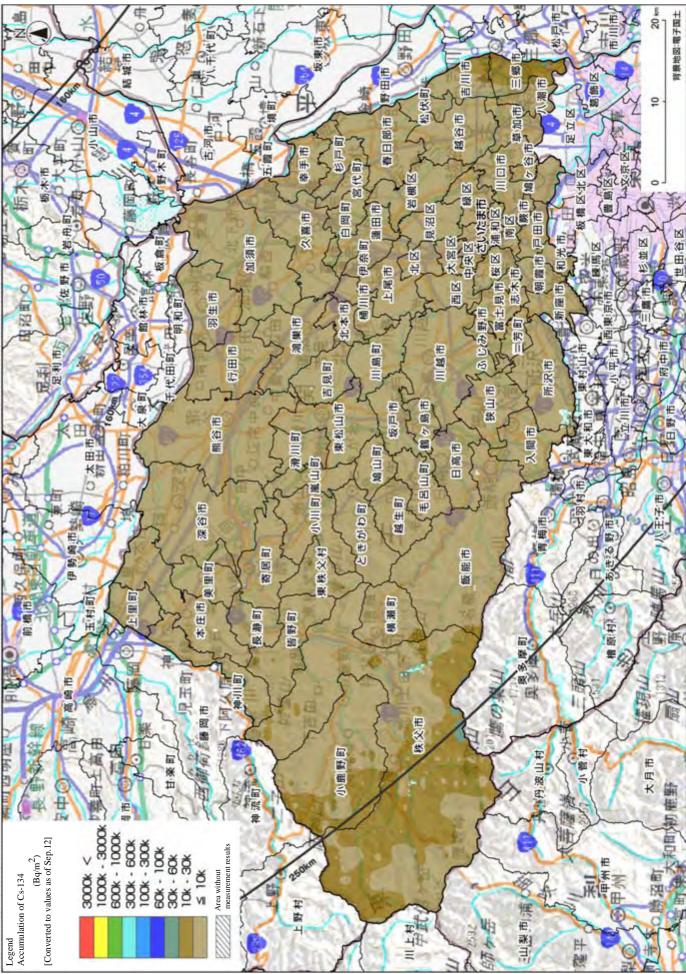
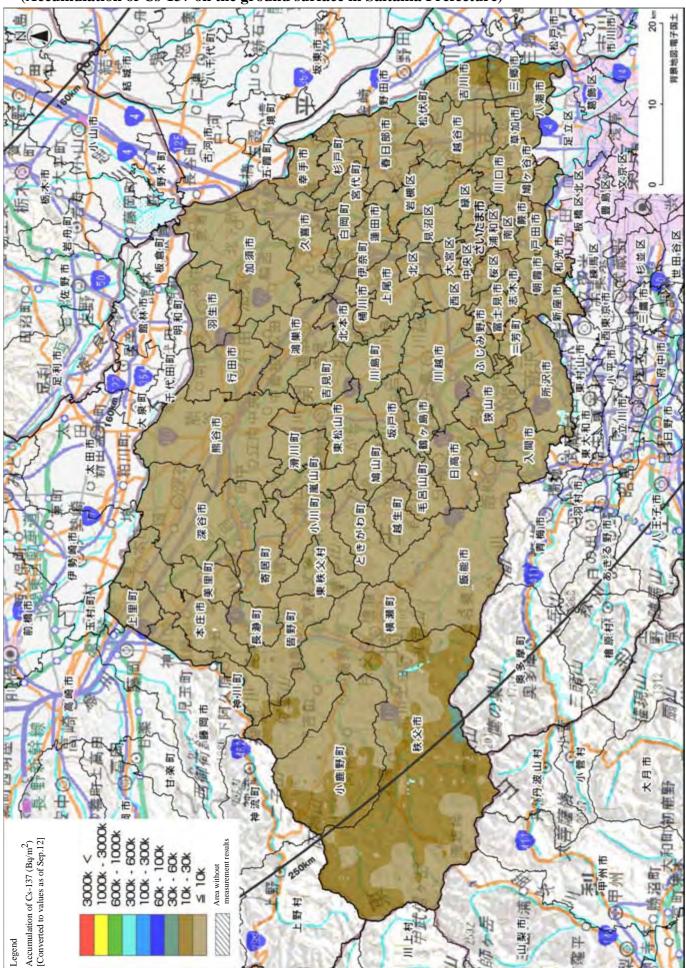

Monitoring of environmental radioactivity

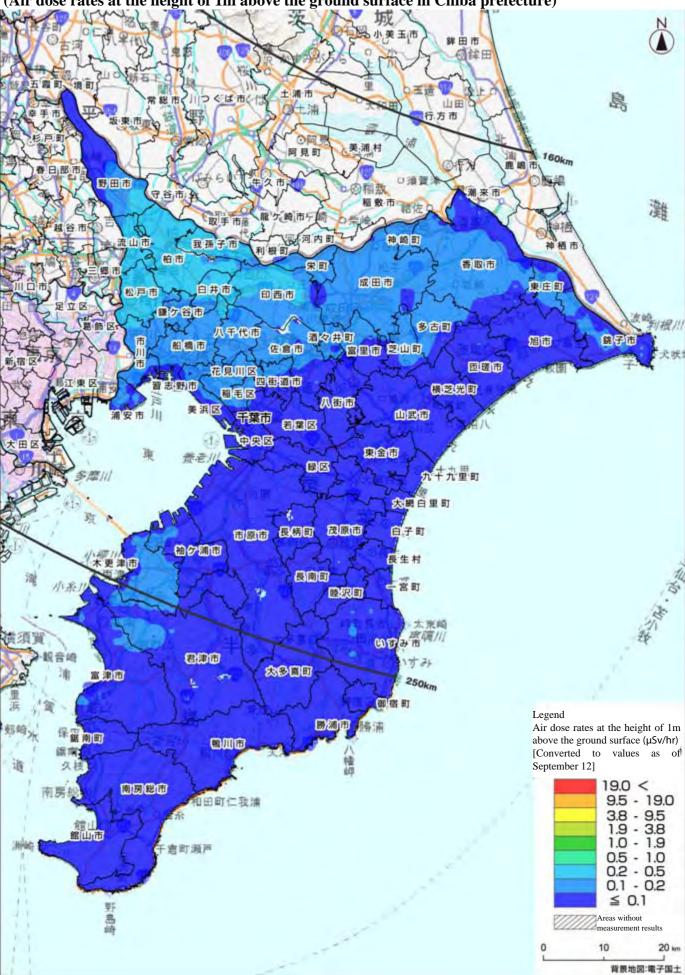
- •Results of Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba Prefecture •••P. 01
- •••P. 09 Results of Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture
- •••P. 21 Results of the Nuclide Analysis of Plutonium and Strontium by MEXT
- Distribution map of radioactivity concentration in the Seawater around TEPCO Fukushima Daiichi NPP -Pu-
- •Distribution map of radioactivity concentration in the Seawater around TEPCO Fukushima Dai- •••P. 32 ichi NPP -Sr-
- •Distribution map of radioactivity concentration in the marine soil around TEPCO Fukushima •••P. 33 Dai-ichi NP -Pu-
- •Distribution map of radioactivity concentration in the seawater around TEPCO Fukushima Dai-•••P. 35 ichi NPP -H-3, gross alpha and gross beta-


Readings of the Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba Prefecture (Air dose rates at the height of 1m above the ground surface in Saitama Prefecture)

Readings of the Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba Prefecture (Total accumulation of Cs-134 and Cs-137 on the ground surface in Saitama Prefecture)


Readings of the Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba Prefecture (Accumulation of Cs-134 on the ground surface in Saitama Prefecture)

Readings of the Airborne Monitoring Survey by MEXT


in Saitama Prefecture and Chiba Prefecture

(Accumulation of Cs-137 on the ground surface in Saitama Prefecture)

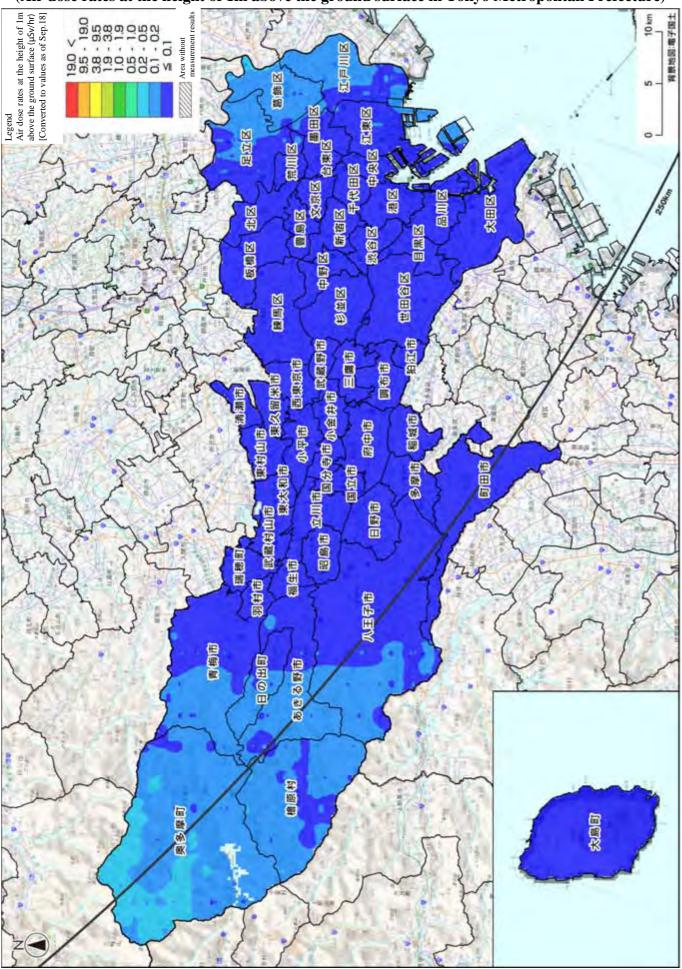
Readings of the Airborne Monitoring Survey by MEXT

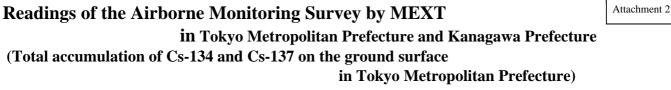
in Saitama Prefecture and Chiba prefecture (Air dose rates at the height of 1m above the ground surface in Chiba prefecture)

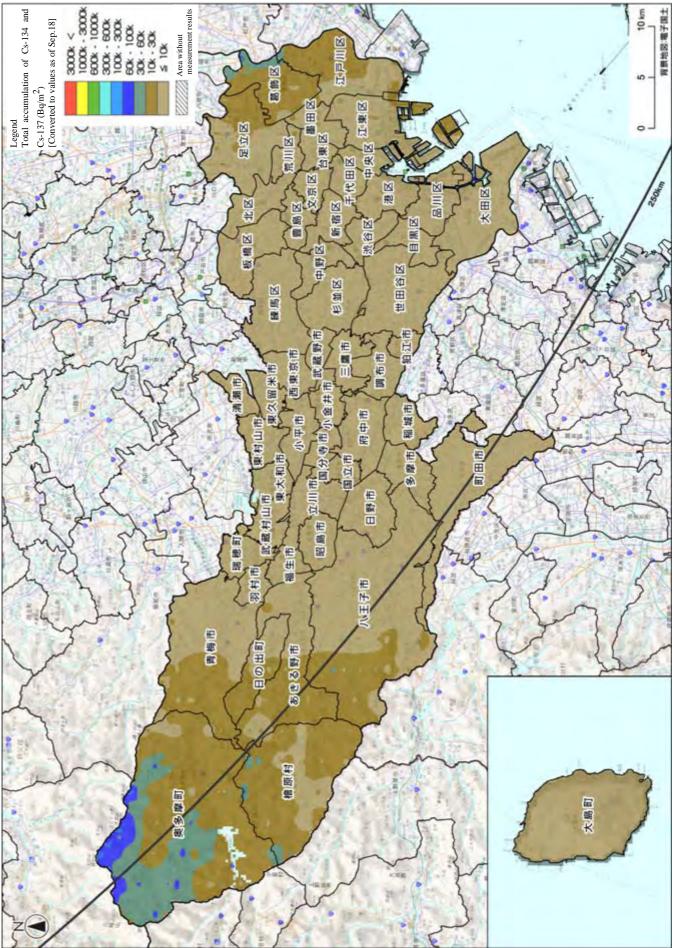
Readings of the Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba prefecture

(Total accumulation of Cs-134 and Cs-137 on the ground surface in Chiba prefecture)

Readings of the Airborne Monitoring Survey by MEXT in Saitama Prefecture and Chiba prefecture (Total accumulation of Cs-134 on the ground surface in Chiba prefecture) 现 小美玉市 鉾田市 C 包詳田 围 不语 土浦市 息 つくば市く 山田 日土浦 行方市 坂,車,市 001 美浦村 阿見町 160km 鹿嶋市 春日部市 久市 の通信 No de 野田市 b回稲款 守谷市 쾲 来 市 和敷市結佐 攈 龍ケ崎市 取手市備 越谷市 利根町 自却 神崎町 流山市 我孫子市 栖市 柏市 栄町 香取市 揭市 成田市 東庄町 自用面、 松戸市 印西市 立区 國ケ省市 ^{友崎}利祝/!! 飾区 222 多古町 从于俄南 酒 **② 井町** 旭市 餘行 船橋市 佐倉市 富里市芝山町 花見川区 市 匝瑳市 盲志野,市 楊芝光町 和毛区 八街市 美浜区 安市川 山武市 葉市 若葉区 央区 東金市 康 緑区 九十九里町 多鹰川 20 大網白里町 斑 長柄町 茂原市 白子町 市原市 袖ケ浦市 木更津市 長生村 長南町 宮町 睦沢町 大東崎 いすみ南西川 須賀 観音崎 君津市 すみ 大多喜町。 浦 富津市 250km 御宿町 -Fi Legend Accumulation of Cs-134 (Bq/m²) 剱崎 保鋸南町 [Converted to values as of 朝川市 信章 September 12] 樯 诸 久村 3000k < 南房総市 南房 旧田町仁我浦 1000k - 3000k 600k - 1000k 館山 300k - 600k 館山市 100k - 300k 洲站 **唐町瀬戸** 60k - 100k 30k - 60k 10k - 30k ≦ 10k Areas without measurement results 島崎 0 10 20 km 育景地図:電子国土

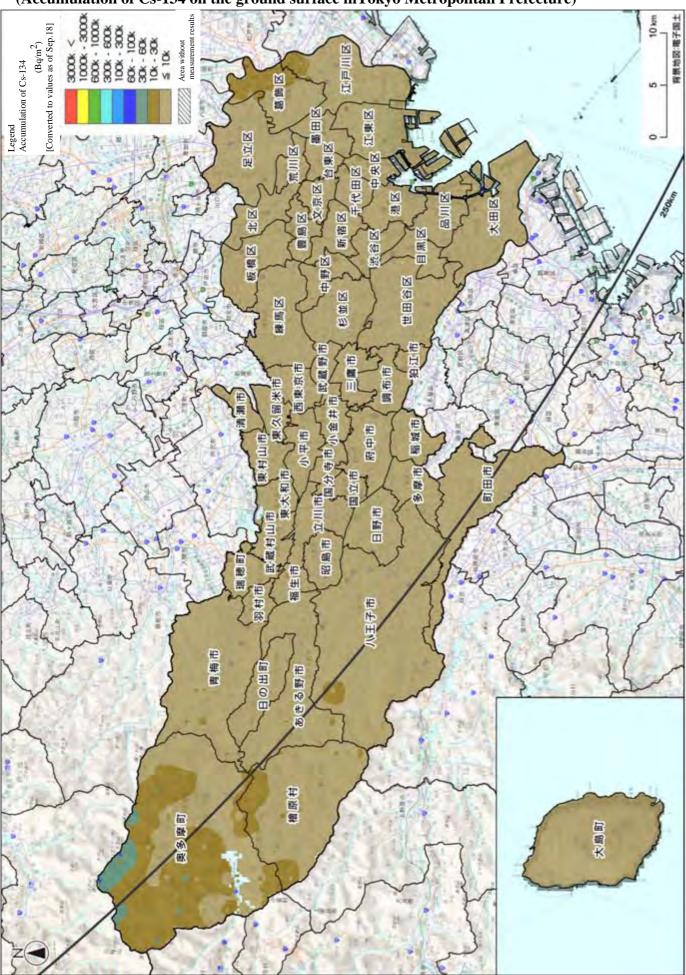

Readings of the Airborne Monitoring Survey by MEXT

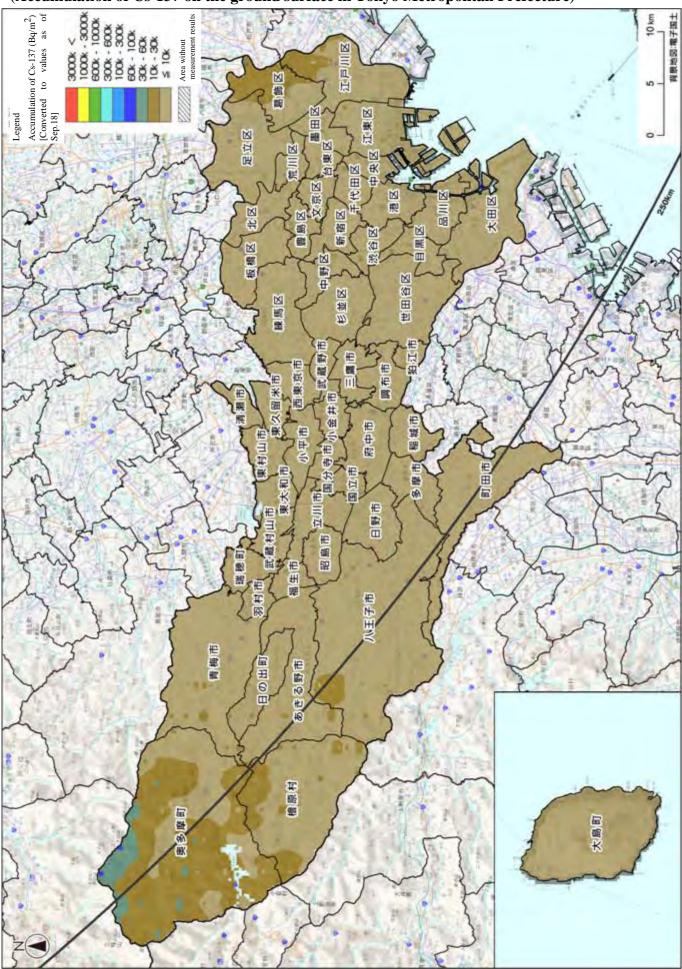

in Saitama Prefecture and Chiba prefecture (Total accumulation of Cs-137 on the ground surface in Chiba prefecture)

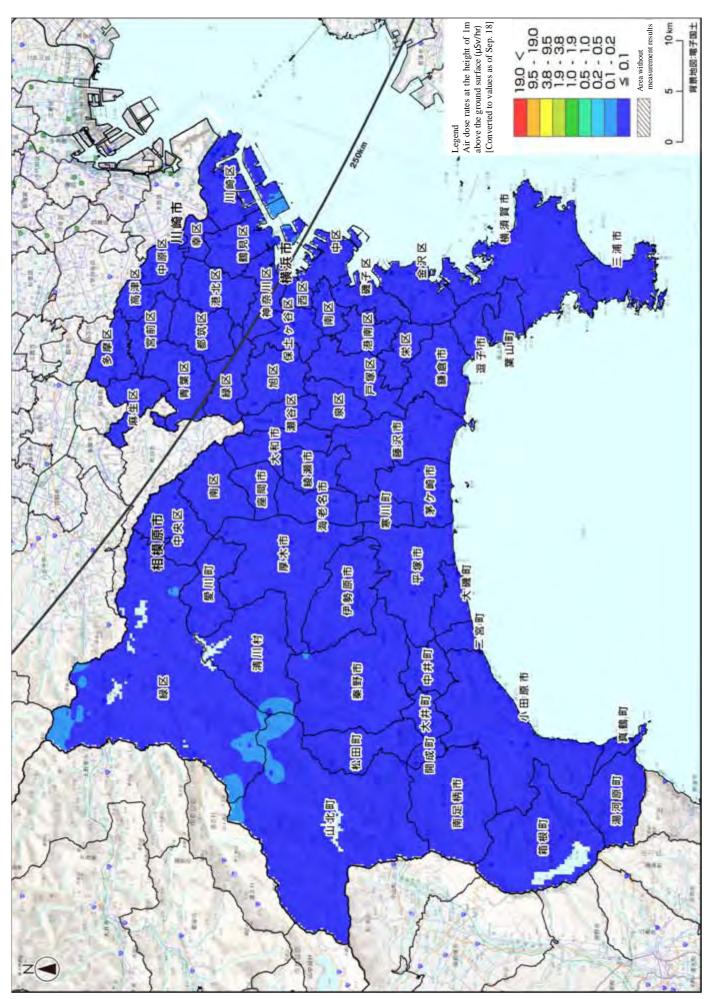


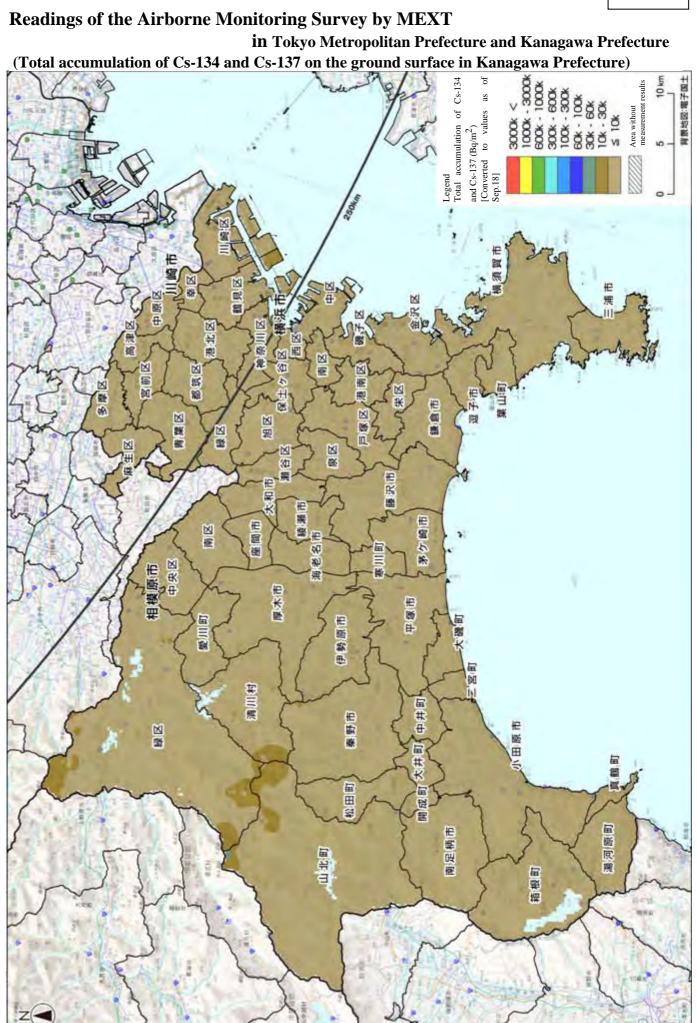
Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture

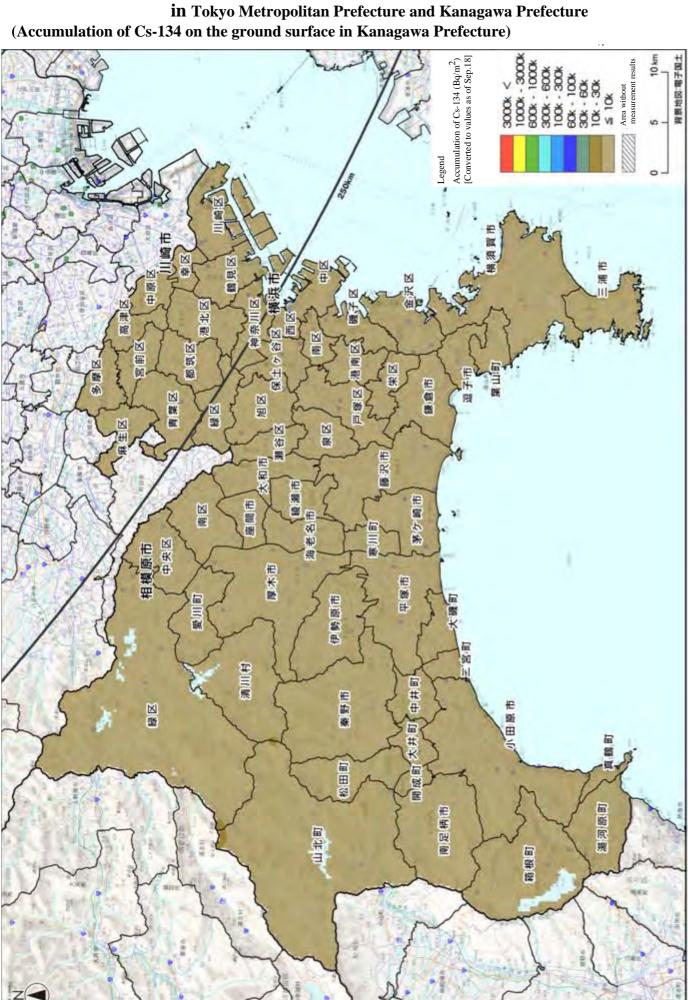
(Air dose rates at the height of 1m above the ground surface in Tokyo Metropolitan Prefecture)



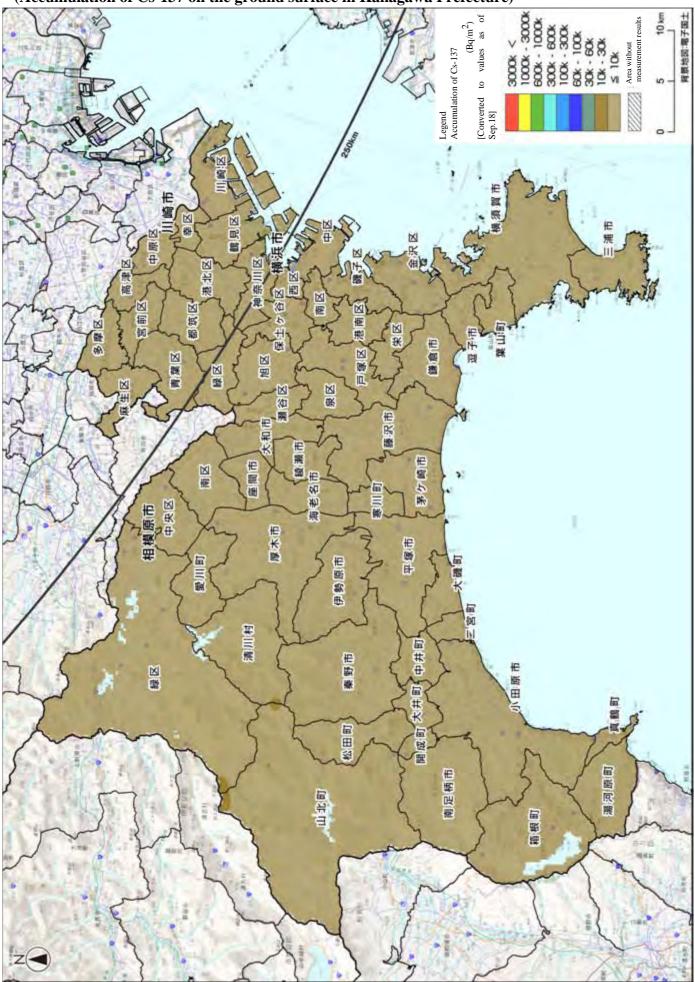


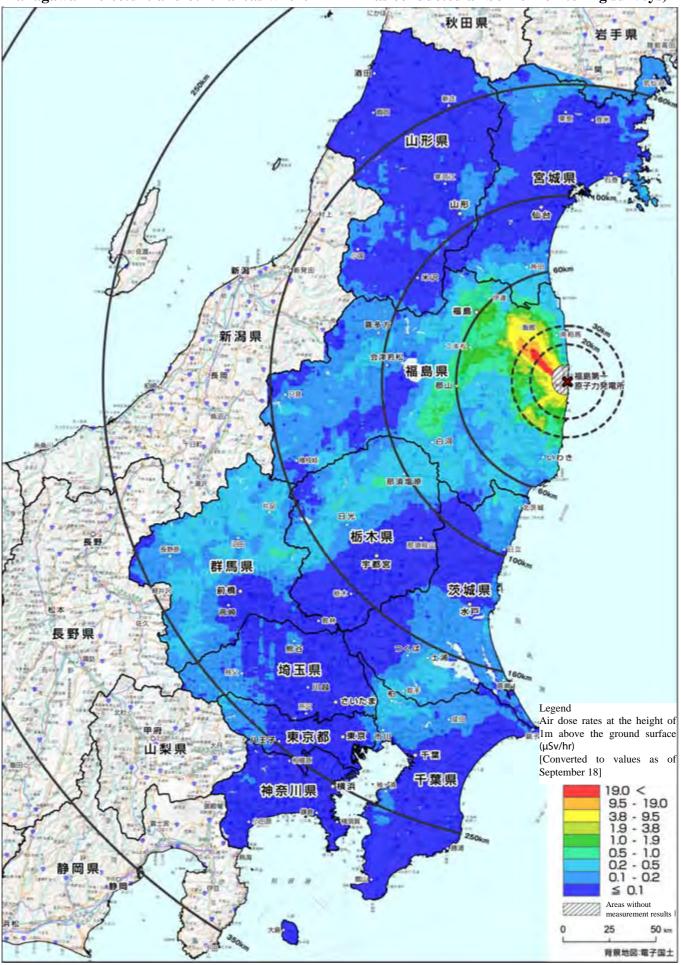

Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Accumulation of Cs-134 on the ground surface inTokyo Metropolitan Prefecture)



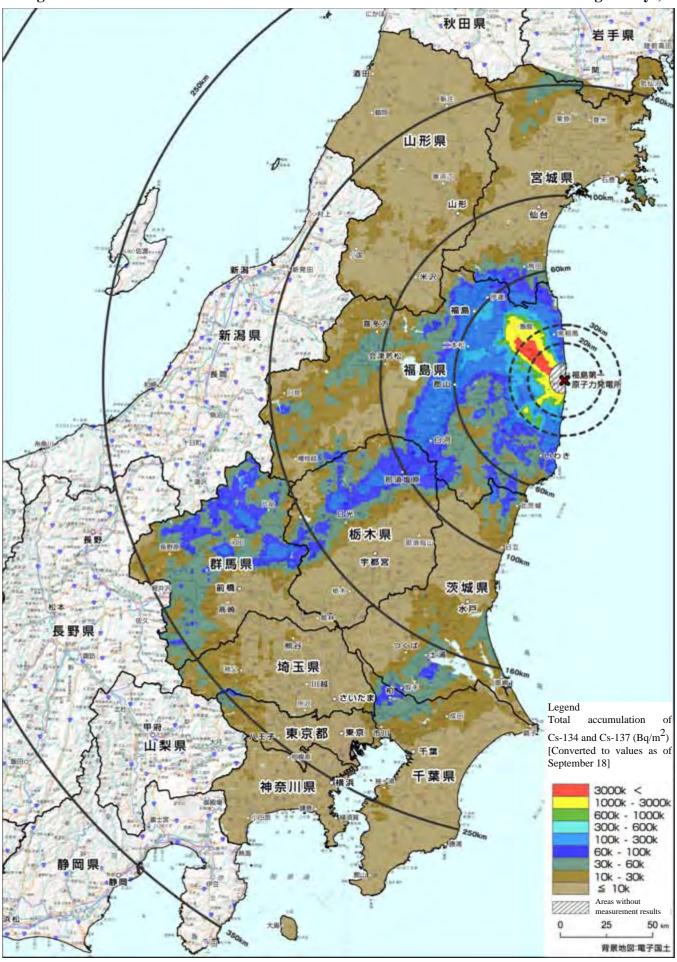

Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Accumulation of Cs-137 on the ground surface in Tokyo Metropolitan Prefecture)

Readings of the Airborne Monitoring Survey by MEXT Attachment 5 in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Air dose rates at the height of 1m above the ground surface in Kanagawa Prefecture)



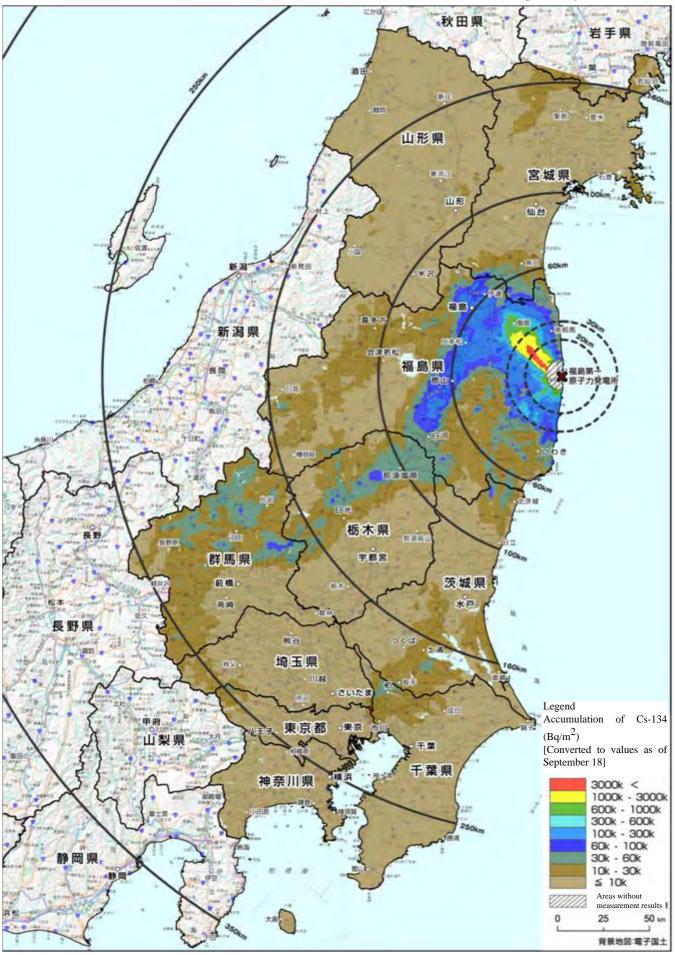

Readings of the Airborne Monitoring Survey by MEXT

Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Accumulation of Cs-137 on the ground surface in Kanagawa Prefecture)

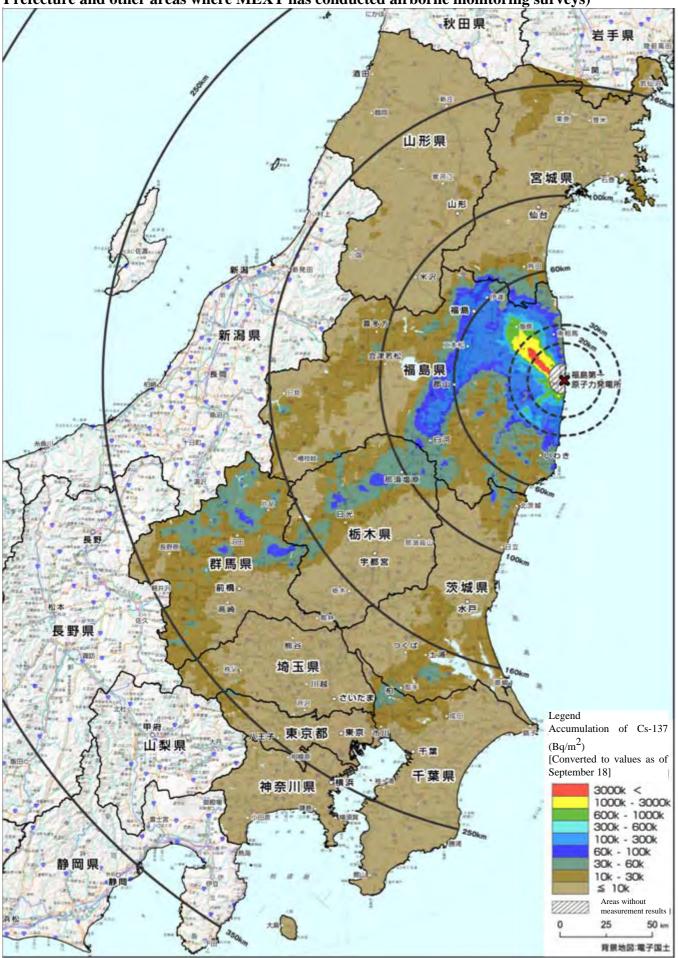

Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture

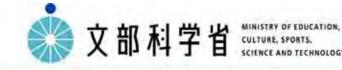
(Air dose rates at the height of 1m above the ground surface in Tokyo Metropolitan Prefecture , Kanagawa Prefecture and other areas where MEXT has conducted airborne monitoring surveys)

Readings of the Airborne Monitoring Survey by MEXT in Tokyo Metropolitan Prefecture and Kanagawa Prefecture


(Total accumulation of Cs-134 and Cs-137 on the ground surface in Tokyo Metropolitan Prefecture, Kanagawa Prefecture and other areas where MEXT has conducted airborne monitoring surveys)

(Reference 3)


Readings of the Airborne Monitoring Survey by MEXT


in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Accumulation of Cs-134 on the ground surface in Tokyo Metropolitan Prefecture, Kanagawa Prefecture and other areas where MEXT has conducted airborne monitoring surveys)

Readings of the Airborne Monitoring Survey by MEXT

in Tokyo Metropolitan Prefecture and Kanagawa Prefecture (Accumulation of Cs-137 on the ground surface in Tokyo Metropolitan Prefecture, Kanagawa Prefecture and other areas where MEXT has conducted airborne monitoring surveys)

SCIENCE AND TECHNOLOGY-JAPAN

September 30, 2011

Results of the Nuclide Analysis of Plutonium and Strontium by MEXT

The results of nuclide analysis of plutonium 238 and 239/240, and strontium 89 and 90 were compiled as follows, in the course of the project commenced on June 6, 2011, under the 2011 Strategic Funds for the Promotion of Science and Technology, entitled "Establishment of the Base for Taking Measures for Environmental Impact of Radioactive Substances — Study on Distribution of Radioactive Substances."

1. Objective of the survey

In order to continuously check the impact of radioactive substances deposited on the ground surface on the health of residents and the environment, MEXT measured air dose rates at around 2,200 locations within approximately 100km from the Fukushima Dai-ichi NPP, and at the same time collected soil samples from the 5cm surface layer at around five points at each location to analyze nuclides by using germanium semiconductor detectors, prior to the rainy season, before any changes occurred on the soil surface. (The results of the measurement of air dose rates were already publicized on August 2 and 12, and the map of radioactive cesium concentration in soil and the map of iodine concentration in soil were released on August 30 and on September 21, respectively.)

At the same time, in order to check the deposition of alpha- and beta-ray emitting nuclides, which were released from the Fukushima Dai-ichi NPP together with gamma-ray emitting nuclides, MEXT conducted a nuclide analysis of plutonium (one of the representative alpha-ray emitting nuclides) and strontium (one of the representative beta-ray emitting nuclides) at 100 locations (one point for each location) out of around 2,200 locations where it had carried out a soil monitoring survey.

The Conference for the Preparation of Distribution Map of Radiation Dose, etc. (Attachment 1), which was established within MEXT, verified the validity of the results of the measurement of plutonium 238 and 239/240,* and strontium 89 and 90, and compiled the results thereof.

* As the alpha-ray energy emitted from plutonium 239 and 240 is almost the same, these amounts cannot be distinguished through the regular analysis method for alpha-ray emitting nuclides. Therefore, the analysis is conducted for the total of these two nuclides.

2. Details of the survey

•Periods: The first period – June 6 to June 14

The second period – June 27 to July 8

•Entities that collected soil samples:

Osaka University, University of Tsukuba, the University of Tokyo, Japan Atomic Energy Agency, "Local Support Team" of the Federation of Electric Power Companies of Japan, etc. (For details, see the "List of Organizations Offering Cooperation in the Preparation

of Distribution Map of Radiation Dose, etc." already released on August 2 and 12.)

oEntity that conducted nuclide analysis: Japan Chemical Analysis Center

 \circ Targets: The amounts of deposition on the ground surface per unit area of plutonium 238 and 239/240, and strontium 89 and 90 (Bq/m²)

3. Results of the survey

Attachments 2-1 and 2-2 are the maps showing the nuclide analysis results of the plutonium 238 and 239/240, and strontium 89 and 90 contained in the collected soil samples.

The aforementioned nuclide analysis results were compiled into maps under the following conditions.

- Data are based on the nuclide analysis of soil samples that MEXT collected during June 6 to July 8 at places with certain space free from disturbance, in the course of the project under the 2011 Strategic Funds for the Promotion of Science and Technology, entitled "Establishment of the Base for Taking Measures for Environmental Impact of Radioactive Substances — Study on Distribution of Radioactive Substances."
- As the airborne monitoring in April revealed that spots showing high radiation doses were concentrated in areas within 80km from the Fukushima Dai-ichi NPP, MEXT, in principle, conducted measurement at one point per 2×2km grid for these areas, and selected points to monitor plutonium 238 and 239/240, and strontium 89 and 90 from among these soil samples. Pretreatment of plutonium 238 and 239/240, and strontium 89 and 90 for nuclide analysis takes time compared with that for gamma-ray emitting nuclides, such as radioactive cesium and iodine. Therefore, MEXT selected points for nuclide analysis in the following manner, and chose only one sample each from multiple soil samples collected at each of these selected points to conduct nuclide analysis.
 - (i) 59 points were selected from each of the municipalities located within 80km from the Fukushima Dai-ichi NPP (59 municipalities), mainly from where the product of detected air dose rates and the population is high.
 - (ii)The remaining 41 points were selected from municipalities located in the restricted areas, evenly in all directions from the Fukushima Dai-ichi NPP.
- Regarding plutonium 238 and 239/240, radiochemical analysis was conducted for 50g of each of the collected soil samples, using silicon semiconductor detectors. The measurement was carried out for nearly 20 hours. The detection limit was set at around 0.5Bq/m² both for plutonium 238 and plutonium 239/240.
- o Regarding strontium 89 and 90, radiochemical analysis was conducted for 30g of each of the

collected soil samples, using low background beta-ray counters. The measurement was carried out for nearly 60 minutes. The detection limit was set at around $300Bq/m^2$ for strontium 89 and around $40Bq/m^2$ for strontium 90.

• As there was an interval between the first period and the second period for collecting soil samples, upon preparing maps, we corrected measured values into radiation levels as of June 14, the final day of the first period, taking into consideration the half-life period for each nuclide, in the same manner as we did for preparing the map of radioactive cesium concentration in soil and the map of iodine concentration in soil.

4. Consideration

4.1 Overall consideration

- Soil samples for this survey were collected at places with certain space free from disturbance. Although the monitored points were limited, we were able to ascertain the distribution of plutonium 238 and 239/240, and strontium 89 and 90 in the area within 80km from the Fukushima Dai-ichi NPP.
- For some points where the largest deposition amounts of plutonium or radioactive strontium were detected in this survey,^{*1} we calculated possible inhalation exposure caused by resuspension from the soil and accumulated external exposure from the soil supposing that a person stays there for 50 years (hereinafter referred to as the "estimated effective dose over 50 years"), based on the Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident proposed by IAEA.^{*2} As a result, it was confirmed that the estimated effective doses over 50 years for these points were considerably smaller than the estimates for the locations where the largest deposition amounts of cesium 134 or 137 were detected.
 - *1: These points are located in the restricted areas and planned evacuation areas, in which nobody resides at present.
 - *2: Method to assess exposure levels described in IAEA-TECDOC-955, 1162
 - Presuming that a radioactive nuclide deposited on the ground stays on that spot, this method defines the procedures to assess accumulated effective doses for a certain period of time after the nuclide is deposited on the ground surface (for the first month, for the second month, and for 50 years). The effective doses thus obtained include external exposure doses and committed doses caused by the inhalation of resuspended radioactive nuclides. In the calculation of accumulated effective doses, consideration was given to the effects of radionuclide decay, nuclear transmutation, and weathering. Furthermore, in order to assess inhalation exposure caused by resuspended radioactive nuclides on the safer side, 10^{-6} /m was adopted as the resuspension factor, which is larger than the value actually measured at the time of the nuclear accident.

(Reference 1)

- Estimated effective doses over 50 years at points where the largest deposition amounts of plutonium 238 and 239/240, and strontium 89 and 90 were detected in this survey
 - (i) Plutonium 238 : 0.027mSv

(ii) Plutonium 239/240	: 0.12mSv
(iii) Strontium 89	: 0.61µSv (0.00061mSv)
(iv) Strontium 90	: 0.12mSv

(Reference 2)

• Estimated effective doses over 50 years at points where the largest deposition amounts of cesium 134 and 137 were detected in this survey

(v) Cesium 134	: 71mSv
(vi) Cesium 137	: 2.0Sv (2,000mSv)

 Compared with the estimated effective doses over 50 years of cesium 134 and 137, those of plutonium and radioactive strontium were very small. Therefore, when assessing exposure doses or implementing decontamination measures in the future, we should focus attention on deposition amounts of cesium 134 and 137.

4.2 Consideration on the results of plutonium measurement

• As seen in Attachment 3, the ratio of deposition amounts of plutonium 238 (half-life: 87.7 years) against those of plutonium 239/240 (plutonium 239 half-life: 2.41×10^4 years; plutonium 240 half-life: 6564 years) that were monitored in a nation-wide survey from FY1999 to FY2008 was around 0.026 (national average). However, the ratios were around 0.33 to 2.2 at five points where plutonium 238 and plutonium 239/240 were both detected in this survey. These higher ratios observed after the accident suggest that plutonium 238 and plutonium 239/240 are newly deposited at these five points due to the accident.

At one point where plutonium 239/240 were not detectable but plutonium 238 was detected, the deposition amount of plutonium 238 was larger than the detection limit for plutonium 239/240 (around 0.5Bq/m²), which suggests that plutonium 238 was newly deposited due to the accident.

Deposition amounts of plutonium 238 and 239/240 confirmed in this survey all fell within the range of measured values of plutonium 238 and 239/240 that were monitored nationwide prior to the occurrence of the accident (range of the influence of past nuclear tests in the atmosphere).

4.3 Consideration on the results of strontium measurement

- As the half-life of strontium 89 is 50.53 days (the half-life of strontium 90 is 28.8 years), at points where strontium 89 was detected in this survey, it is considered that it was newly deposited due to the accident.
- \circ At the points where strontium 89 was not detectable but strontium 90 was detected in this survey, measured values of strontium 90 fell within the range of values measured nationwide prior to the occurrence of the accident (2.3 to 95Gq/m²).
- With regard to soil samples in which strontium 89 and 90 were detected, we calculated the ratios of deposition amounts of strontium 89 against those of strontium 90. The calculation results were 1.9 to 6.5 (4.0 on average) and the ratios of these two nuclides stayed almost the same. On the other hand, with regard to soil samples in which strontium 89 was detected, calculated ratios of deposition amounts of strontium 89 against those of cesium 137 varied widely from 5.6×10^{-4} to

 1.9×10^{-1} (9.8×10⁻³ on average).

These results show that the distribution of deposited radioactive strontium and radioactive cesium is not even. In the future, we will conduct additional surveys mainly at locations where the ratios of deposition amounts of radioactive strontium against those of radioactive cesium are high. Furthermore, we will examine the behavior of strontium in detail through a survey on the movement of radioactive substances and the checking of the inside of a furnace when a radioactive plume is released from a reactor.

(Reference)

Ratios of deposition amounts of strontium 90 against those of cesium 137

Ratios of deposition amounts of strontium 90 against those of cesium 137 in soil samples in which strontium 90 was detected: 1.6×10^{-4} to 5.8×10^{-2} (2.6×10^{-3} on average)

5. Future plans

• Regarding the results of the measurement of radioactive nuclides other than iodine-131, radioactive cesium, radioactive strontium, and plutonium, as well as the results of the survey on the movement of radioactive substances, we have verified their validity and have discussed how to compile them, based on opinions from experts. We will prepare a report compiling the results of this survey and will release it later. We will also publicize anything that we find necessary to release immediately in the process of preparing the report.

<担当> 文部科学省 原子力災害対策支援本部 堀田(ほりた)、奥(おく)(内線 4604、4605) 電話:03 - 5253 - 4111(代表) 03 - 5510 - 1076(直通)

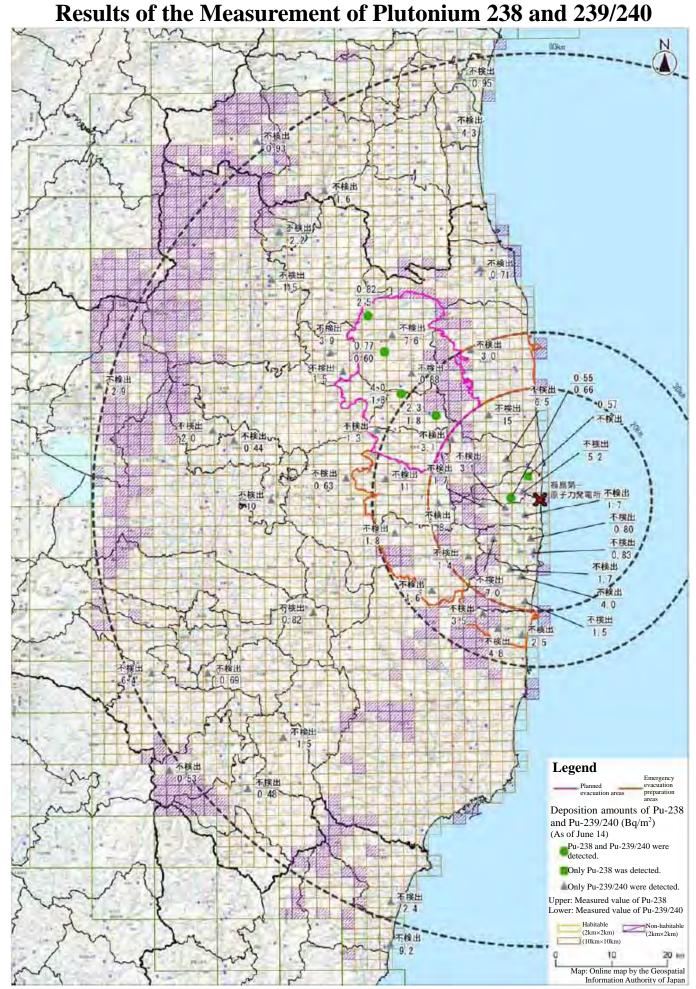
Concerning the Conference for the Preparation of Distribution Map of Radiation Dose, etc.

1. Objective of holding the conference

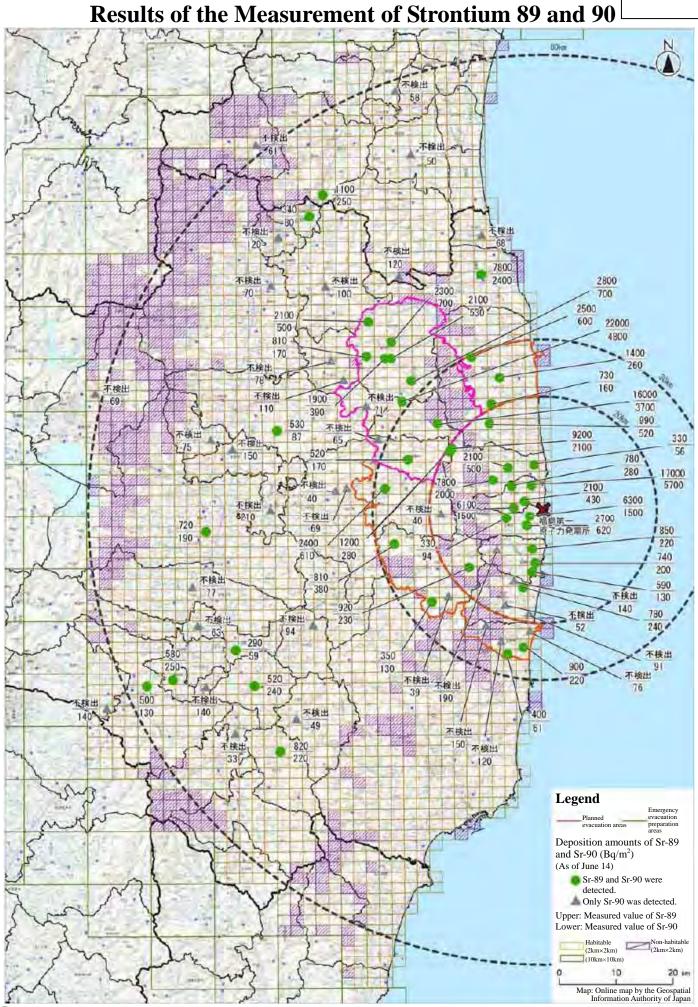
Based on the "Plan to Strengthen Environmental Monitoring" (Nuclear Emergency Response Headquarters; April 22, 2011) and the "Policies for Emergency Responses for Those Affected by the Nuclear Incident" (Nuclear Emergency Response Headquarters; May 17, 2011), MEXT decided to prepare a distribution map of radiation doses and other maps for the purpose of utilizing them to ascertain the overall picture of the accident and consider the removal of the designation of evacuation areas.

Prior to the preparation of the maps, the Conference for the Preparation of Distribution Map of Radiation Dose, etc. will be held to discuss technical matters.

2. Matters to be discussed

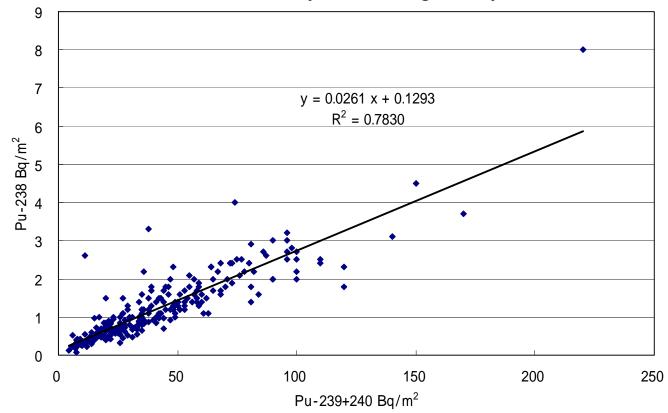

- Technical matters related to the preparation of an air dose rate map for the purpose of ascertaining the distribution of radioactive substances
- Technical matters related to the preparation of a soil concentration map for the purpose of ascertaining the accumulation of radioactive substances in the surface layer of soil
- Technical matters related to the preparation of a radiation concentration distribution map for farmland soil for the purpose of ascertaining the accumulation of radioactive substances in farmland soil
- Technical matters related to the confirmation of movements of radioactive substances from the soil surface (movements to rivers and groundwater, etc., splash from the soil surface, and infiltration into soil, etc.)

3. Clerical work


Clerical work of the Conference will be handled by the Nuclear Safety Division of the Science and Technology Policy Bureau.

<u>4. Conference members</u>

Name	Professional affiliation		
IKEUCHI Yoshihiro	Commissioner, Japan Chemical Analysis Center		
KIMURA Hideki	Vice Counselor, Nuclear Safety Division, Department of		
	Environment and Public Affairs, Aomori Prefectural		
	Government		
KOYAMA Yoshihiro	Division Chief, Nuclear Safety Division, Department of Living		
	Environment, Fukushima Prefectural Government		
SAITO Kimiaki	Chief of Senior Researcher, Headquarters of Fukushima		
	Partnership Operations, Japan Atomic Energy Agency		
SHIBATA Tokushi	Visiting Researcher, Japan Proton Accelerator Research		
	Complex, Japan Atomic Energy Agency		
SHIMO Michikuni	Visiting Professor, Fujita Health University		
SUGIURA Nobuyuki	Director, Research Center for Radiation Emergency Medicine,		
	National Institute of Radiological Sciences		
TAKAHASHI Takayuki	Vice President (in charge of research) and Library Director,		
	Fukushima University		
TAKAHASHI Hiroyuki	Professor, Department of Nuclear Engineering and		
	Management, The University of Tokyo		
TAKAHASHI Tomoyuki	Associate Professor, Division of Nuclear Engineering Science,		
	Kyoto University Research Reactor Institute		
CHINO Masamichi	Vice Directorate Head, Nuclear Science and Engineering		
	Directorate, Japan Atomic Energy Agency		
NAGAOKA Toshi	Head of the Safety Management Division, Japan Synchrotron		
	Radiation Research Institute		
NAKAMURA Hisashi	Professor Emeritus, Tohoku University		
HASEBE Akira	Research Supervising Chief, National Institute for		
	Agro-Environmental Sciences		
HISAMATSU Shunichi	Department Director, Department of Radioecology, Institute		
	for Environment Sciences		
MURAMATSU Yasuyuki	Professor, Department of Chemistry, Faculty of Science,		
	Gakushuin University		
YOSHIDA Satoshi	Unit Chief, Operation and Planning Unit, Research Center for		
	Radiation Protection, National Institute of Radiological		
	Sciences		


* O I : Where Pu-238 and Pu-239/240 are considered to have been newly deposited due to the accident at the Fukushima Dai-ichi NPP

* 💛: Where Sr-89 and Sr-90 are considered to have been newly deposited due to the accident at the Fukushima Dai-ichi NPP

Relation between Pu-238 and Pu-239/240 Confirmed So Far in a Nationwide Survey

Results of the environmental radioactivity monitoring survey from FY1999 to FY2008

Out of 1,054 soil samples collected in the environmental radioactivity monitoring survey from FY1999 to FY2008, plutonium 238 and 239/240 were detected in 252 samples. Regarding these 252 samples, we calculated the ratios of deposition amounts of Pu-238 against those of Pu-239/240. The national average of the ratio was 0.0261.

(Reference)

Average concentration and range of measured values for 1,054 soil samples collected in the survey from FY1999 to FY2008:

- [Pu-238] Average: $0.498Bq/m^2$; Range: Detection limit to $8.0Bq/m^2$
- [Pu-239/240] Average: 17.8Bq/m²; Range: Detection limit to $220Bq/m^2$

東京電力株式会社福島第一原子力発電所周辺の海底土の分析結果(プルトニウム)

(Analysis results of marine soil samples around TEPCO Fukushima Dai-ichi NPP - Pu -)

平成23年10月7日 October 7,2011 文部科学省 Ministry of Education, Culture, Sports, Science and Technology (MEXT)

1. 海底土中の放射能濃度

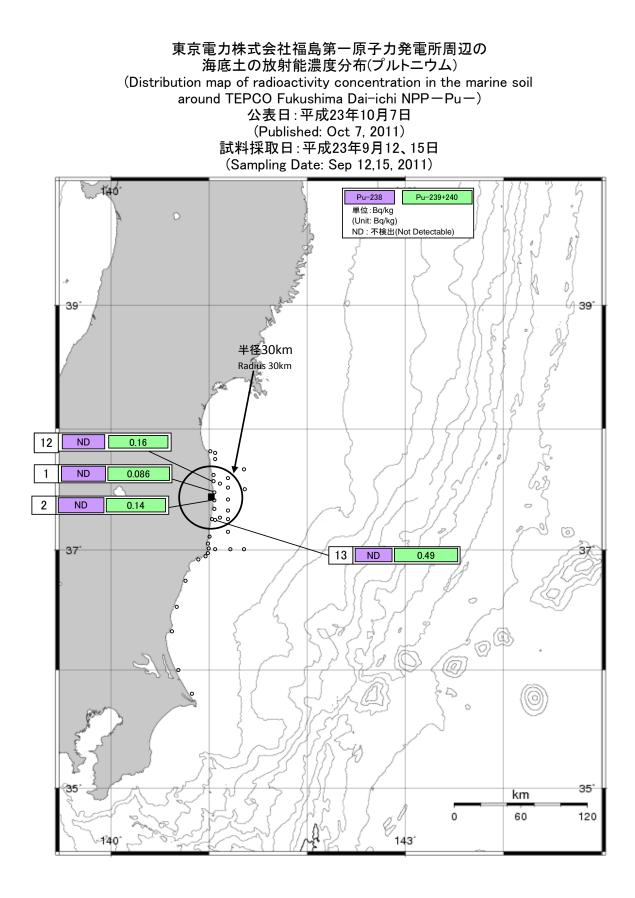
1. Radioactivity Concentration Undersea

測定試料採取点 Sampling Point	採取地点 Sampling location	採水日 Sampling Date	放射能濃度 ^(注1) (Bq / kg) []内は検出限界値を示す。 Radioactivity Concentration(Bq / kg) []: detection limits	
			Pu-238	Pu-239,Pu-240
福島第一原子力発電所 5~6号機放水口北側 1 North of discharge channel of 5−6 of Fukushima	2011.9.12	不検出 ND	0.086	
	Dai-ichi nuclear power station	2011.0.12	[0.014]	-
福島第一原子力発電所 南放水口付近 2 Around south discharge channel of Fukushima Dai- ichi nuclear power station	2011.9.15	不検出 ND	0.14	
		[0.015]	-	
福島第一原子力発電所 岩沢海岸沖合3km 13 3km offshore of Fukushima Dai-ichi nuclear power station, Iwasawa Shore	2011.9.15	不検出 ND	0.49	
	•	2011.9.13	[0.017]	-
福島第一原子力発電所 小高区沖合3km 12 3km offshore of Odaka ward, Fukushima Dai−icl nuclear power station	2011.9.15	不検出 ND	0.16	
	·	2011.9.10	[0.013]	-

東京電力(株)の発表(下記URL)をもとに文部科学省が作成

Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/11100608-j.html)

(注1) NDの記載は、海水の放射能濃度の検出値が検出限界値を下回る場合。


ND indicates the case that the detected radioactivity concentration in marine soil was lower than the detection limits.

2. 結果概要

2. Outline of result

Pu-239+Pu-240は、Pu-238が検出されていないこと、および過去の大気圏内核実験によるものと思われる平成11年度~平成20年度における測定値の範囲内(0.17~0.56Bq/kg)と同等であることから、今回の事故に由来するものとは説明できないと考えられる。

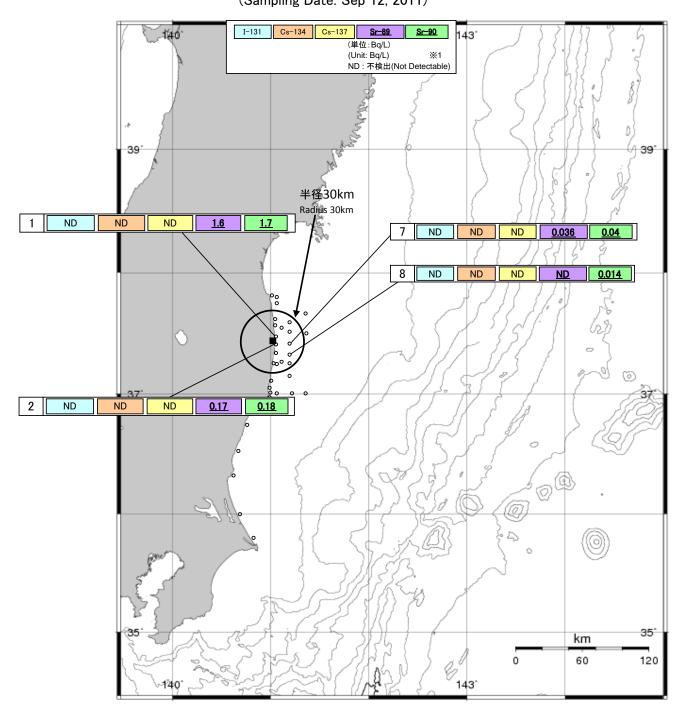
It can't be explained that Pu-239 and Pu-240 are caused by this accident, because Pu-238 is not detected and the concentrations of Pu-239+Pu-240 are comparable to the range of the values(0.17 to 0.56(Bq/kg)) measured from 1999 to 2008 fiscal year that is assumed to be caused by the past nuclear tests in the atmosphere.

図中の■は東京電力(株)福島第一原子力発電所を示す

*東京電力(株)の発表(http://www.tepco.co.jp/cc/press/11100608-j.html)をもとに文部科学省が作成

Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/11100608-j.html)

- ※1 NDの記載は、海底土のPu濃度の検出値が検出限界値(Pu-238について約0.017Bq/L)を下回る場合。
- ただし、検出限界値は検出器や試料性状により異なるため、この値以下でも検出される場合もある。


%1 ND indicates the case that the detected concentration of Pu in marine soil was lower than the detection limits of approximately 0.017 Bq/kg for Pu-238.

Please note that these nuclides are sometimes detected even when they are below the threshold, contingent on the detector or samples.

東京電力株式会社福島第一原子力発電所周辺の海水中の放射能濃度分布(ストロンチウム)

(Distribution map of radioactivity concentration in the seawater

around TEPCO Fukushima Dai-ichi NPP-Sr-) 公表日:平成23年10月7日 (Published: Oct 7, 2011) 試料採取日:平成23年9月12日 (Sampling Date: Sep 12, 2011)

図中の■は東京電力(株)福島第一発電所を示す

*太字下線データが今回追加分(Boldface and underlined readings are new)

*東京電力(株)の発表(http://www.tepco.co.jp/cc/press/index11-j.html)をもとに文部科学省が作成

Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/index11-j.html)

*ストロンチウムについては、半減期50.5日のSr-89が検出されていることから、東京電力(株)福島第一原子力発電所から放出されたものと 考えられます。

(Regarding strontium, Sr-89 that has half life of 50.5 days, was detected. It is thought to be released from the site of TEPCO Fukushima Dai-ichi NPP)

※1 NDの記載は、海水の放射能濃度の検出値が検出限界値(I-131が約4Bq/L、Cs-134が約6Bq/L及びCs-137が約9Bq/L、Sr-89が約 0.02Bq/L)を下回る場合。

%1 ND indicates the case that the detected radioactivity concentration in sea water was lower than the detection limits of approximately 4 Bq/L for I-131, 6 Bq/L for Cs-134, 9 Bq/L for Cs-137, 0.02Bq/L for Sr-89.

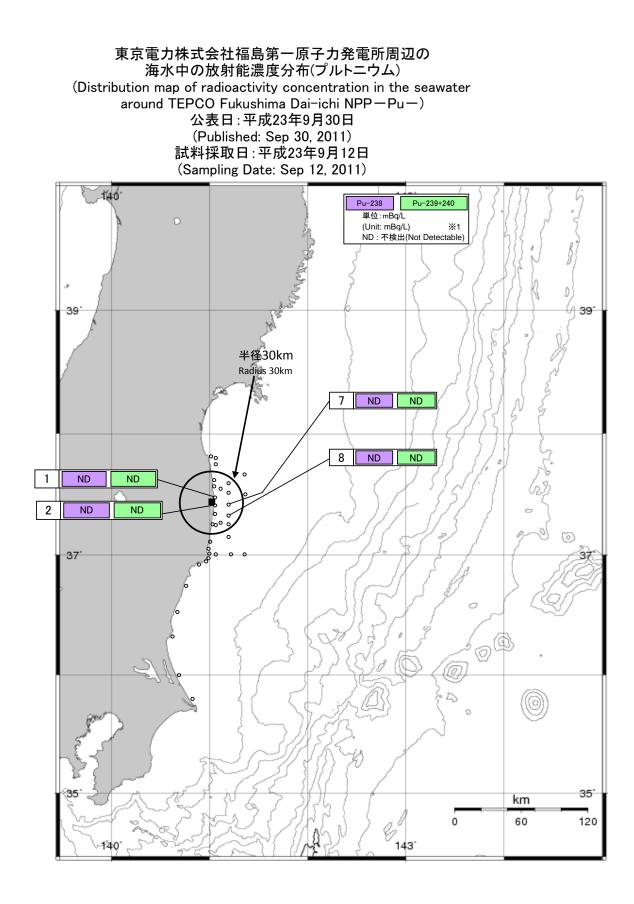
東京電力株式会社福島第一原子力発電所周辺の海域モニタリング結果

Readings of Sea Area Monitoring around TEPCO Fukushima Dai-ichi NPP

平成23年9月30日 September 30, 2011 文部科学省 Ministry of Education, Culture, Sports, Science and Technology (MEXT)

1. 海水中の放射能濃度

1. Radioactivity Concentration Undersea


測定試料採取点 Sampling Point	採取地点 Sampling location	採水日 Sampling Date	放射能濃度 ^(注1) (mBq/L) []内は検出限界値を示す。 Radioactivity Concentration(mBq/L) []: detection limits	
			Pu-238	Pu-239,Pu-240
福島第一原子力発電所 5~6号機放水口北側 1 North of discharge channel of 5-6 of Fukushima	2011.9.12	不検出 ND	不検出 ND	
	Dai-ichi nuclear power station	2011.9.12	[0.52]	[0.49]
福島第一原子力発電所 南放水口付近 2 Around south discharge channel of Fukushima Dai- ichi nuclear power station	2011.9.12	不検出 ND	不検出 ND	
		[0.48]	[0.48]	
福島第一原子力発電所 沖合15km 7 15 km offshore of Fukushima Dai−ichi nuclear power station	2011.9.12	不検出 ND	不検出 ND	
		[0.84]	[0.73]	
福島第二原子力発電所 沖合15km 8 15 km offshore of Fukushima Dai-ni nuclear powe station	2011.9.12	不検出 ND	不検出 ND	
		2011.9.12	[0.7]	[0.66]

東京電力(株)の発表(下記URL)をもとに文部科学省が作成

Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/index11-j.html)

(注1) NDの記載は、海水の放射能濃度の検出値が検出限界値を下回る場合。

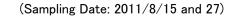
ND indicates the case that the detected radioactivity concentration in sea water was lower than the detection limits.

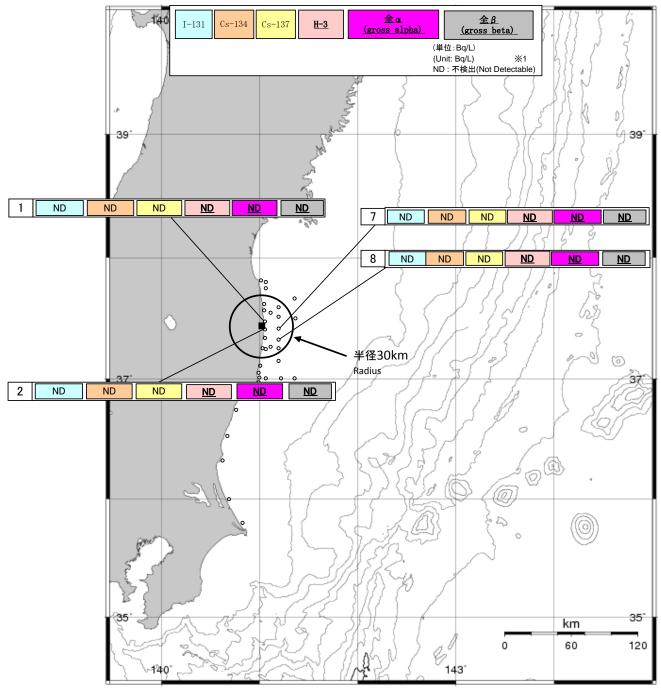
図中の■は東京電力(株)福島第一原子力発電所を示す

*東京電力(株)の発表(http://www.tepco.co.jp/cc/press/index11-j.html)をもとに文部科学省が作成

Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/index11-j.html)

※1 NDの記載は、海水中のPu濃度の検出値が検出限界値(Pu-238及びPu-239+240について約0.84mBq/L)を下回る場合。


X1 ND indicates the case that the detected concentration of Pu in sea water was lower than the detection limits of


approximately 0.84mBq/L for Pu-238 and Pu-239+240.

東京電力株式会社福島第一原子力発電所周辺の海水中の放射能濃度分布(H-3.全 α 及び全 β)

(Distribution map of radioactivity concentration in the seawater around TEPCO Fukushima Dai-ichi NPP - H-3,gross alpha and gross beta -) 公表日:平成23年9月30日

(Published: Sep 30, 2011) 試料採取日:平成23年8月15日及び27日

図中の■は東京電力福島第一発電所を示す

*太線データが今回追加分(Boldface and underlined readings are new) *東京電力(株)の発表(http://www.tepco.co.jp/cc/press/index11-j.html)をもとに文部科学省が作成

(Based on the press release of TEPCO (http://www.tepco.co.jp/cc/press/index11-j.html)

- ※1 NDの記載は、海水の放射能濃度の検出値が検出限界値(I-131が約9Bq/L、Cs-134が約22Bq/L、Cs-137が約24Bq/L、H-3が約110Bq/L、 全 α が約4 Bq/L及び全 β が約23Bq/L)を下回る場合。
- ×1 ND indicates the case that the detected radioactivity concentration in sea water was lower than the detection limits of approximately 9Bq/L for I=131, 22Bq/L for Cs=134, 24Bq/L for Cs=137, 110Bq/L for H=3, 4Bq/L for gross alpha and 23Bq/L for gross beta.